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Abstract
The Linux Kernel project suffers from a significant
problem, thousands of people are collaborating to
create one of the most popular contemporary Oper-
ating System Kernels. There are fears that software
project of such magnitude may cause bugs which no
single human is able to solve1. In this paper we will
examine how, by training a Recurrent Neural Net-
work to generate new kernel code, the productivity
and efficiency of the Linux Project might increase
as human involvement can be limited to oversight
and managerial tasks.
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1 Introduction
The use of Recurrent Neural Networks (RNN) for
text prediction and classification has seen great re-
sults in the last couple of years [4]. A. Karpathy
presents in his excellent blog post how RNN models
can be used to approximate close to arbitrary char-
acter sequences, such as Shakespeare, LaTeX, or C
source code. In this project we will aim to produce

1https://lwn.net/Articles/285088/

procedurally generated source code for the Linux
kernel using a RNN model.

The paper starts with a section about important
theoretical background to the method. After the
theory, implementation details such as RNN model
and hyper parameters will be presented followed by
results and finally a discussion and conclusion about
the project findings.

2 Theory

This section presents important aspects of relevant
model design such as network architecture and eval-
uation function. For a more in-depth reading, see
the textbook written by I. Goodfellow et. al [1].

2.1 Recurrent Neural Network
(RNN)

As described by I. Goodfellow et. al [1], RNN s are a
family of deep learning models which specializes in
predicting outputs dependent on a sequential input.
In general terms can a RNN be seen as the unrolling
of an regular Feed forward Neural Network where
the output is connected to the input of a part of the
network. Such feedback loops allows the network
to model an internal state. The figure 1 shows a
typical Recurrent Neural Network where there is a
feedback loop between parts of the hidden layers.
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Figure 1: Example of an RNN with a feedback loop
in the hidden layers. x is the input and L a function
which measures the error from predicted output (o)
and the expected value y.W , V , and U are matrices
with weights for each of the layers.

Unrolling the network (as shown in figure 2)
makes it easier to observe how the looping structure
allow for sequence dependent output with shared
weights between each time step. This is a signifi-
cant advantage in terms of model complexity. For
example, a input in the time-step t− 5 could make
the output in t fire.

Figure 2: Unrolling of a neural net (N) with feedback
loops. t represents the given time-step and h the
output for the given time-step.

In theory, a RNN model, as shown above in fig-
ure1, can model functions where the output depends
on input which has arrived a long time before the
current time-step. However, according to [3], the
most widely used methods requires impractically
much time to model such long-term memory mod-
els. The main reason for this discrepancy is the
problem of vanishing gradients, where the propa-
gation error significantly reduces as layers further
from the output are corrected.

2.2 Long Sort Term Memory
(LSTM)

Long Sort Term Memory Networks was first pro-
posed by S. Hochreiter and J. Schmidhube [3] as
a remedy to the problem of modelling long-term
memory in RNN s. The paper propose an extension
to the typical hidden RNN cell, which allow for eas-
ier long-term memory as the back-propagation does
not suffer as much by vanishing gradients.

Figure 3: Visualization of an LSTM cell. Each block
is a Layer operation and the circles are element-
wise. Credit to C. Olah for the excellent blog post[5]
dissecting the function of LSTM cells.

Figure 4 shows the same LSTM cell but with
internal variables annotated.
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Figure 4: Annotated version of a LSTM cell.

There are four layers in each cell, three σ layers
and one tanh. The fist sigmoid layer is referred to
as a forget gate, which determines what parts of the
signal from the previous time-steps should continue
propagation. The output of the gate is determine
on the form:

ft = σ(Wf · [ht−1, xt]) (1)

where Wf is the weights for said layer (intercept
values are assumed to be included in the weight-
matrix for all layer operations).

The second σ and the thanh layers are combined
in order to determine what should be added to the
memory line. It is computed using the equations:

it = σ(Wi · [ht−1, xt]) (2)
C̃t = tanh(WC · [ht−1, xt]) (3)

which are combined on the form Ct = ft ∗ Ct−1 +
it ∗ C̃t. The output for the cell t is computed using
the memory-line and the last σ layer:

ot = σ(Wo[ht−1, xt]) (4)
ht = ot ∗ tanh(Ct) (5)

where ht is the final output from the cell.

2.3 Loss function
The loss function used to compare true and pre-
dicted character sequences is a variant of cross en-
tropy for multinomial classes based on the softmax

function. Credit to P. Roelants2 for the derivation
of loss function. In principe we take the softmax
function:

yc = ezc∑C
d=1 e

zd

(6)

where C is the set of all classes we want to evaluate.
Applying the function for all classes yelds a vector
with values ∈ [0, 1] and element sum of 1.

Calculating the cross-entropy loss function for
the softmax function is done though:

ξ(T, Y ) = −
n∑

i=1

C∑
t=c

tic · log(yic) (7)

where T is a vector of all expected class labels and Y
is a vector with the corresponding predicted labels.
The outer sum allows to perform the loss calculation
for multiple characters, for example a batch or a
sequence.

3 Implementation Details
The model will be evaluated on a computer with
the following hardware:

RAM 16GB
CPU AMD Ryzen 7 170
GPU NVIDIA GTX 980Ti 6GB

Table 1: Hardware specification for computer which
will be used for model training and predictions.

The model will be implemented in the Tensorflow
framework and additional code is implemented in
Python.

3.1 Data gathering and Representa-
tion

Character sequences used for the model training
are extracted from the Linux kernel source code
repository 3. All files with the ending “.c” are con-
catenated and the first 1 million lines are used as
training/validation data.

An alphabet of all occurring characters is created
and used for encoding/decoding the model input

2http://peterroelants.github.io/posts/
neural_network_implementation_intermezzo02/

3https://github.com/torvalds/linux
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and output respectively. The alphabet used in or-
der to model the network contains the following
characters:

1 [
2 ’\t’, ’\n’, ’\x0c’, ’ ’, ’!’, ’"’,
3 ’#’, ’$’,’%’, ’&’, "’", ’(’, ’)’,
4 ’*’, ’+’, ’,’, ’-’,’.’, ’/’, ’0’,
5 ’1’, ’2’, ’3’, ’4’, ’5’, ’6’,’7’,
6 ’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’,
7 ’?’,’@’, ’A’, ’B’, ’C’, ’D’, ’E’,
8 ’F’, ’G’, ’H’,’I’, ’J’, ’K’, ’L’,
9 ’M’, ’N’, ’O’, ’P’, ’Q’,’R’, ’S’,

10 ’T’, ’U’, ’V’, ’W’, ’X’, ’Y’, ’Z’,
11 ’[’, ’\\’, ’]’, ’^’, ’_’, ’‘’, ’a’,
12 ’b’, ’c’,’d’, ’e’, ’f’, ’g’, ’h’,
13 ’i’, ’j’, ’k’, ’l’,’m’, ’n’, ’o’,
14 ’p’, ’q’, ’r’, ’s’, ’t’, ’u’,’v’,
15 ’w’, ’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’
16 ]

which results in the one-hot input vector ~x ∈
Z98

2 . The output vector ~y from the model will be
on the form ~x ∈ R98, where each row corresponds
to a symbol in to alphabet and the probability of
said symbol appearing as the next character in the
sequence.

3.2 Network Architecture
The network architecture is built with one input
layer, 4 hidden layers, and a fully connected out-
put layer. The hidden layers consists each of 256
LSTM cells. As described in the section above, the
input and output are both vectors with 98 dimen-
sion. Layer weights are randomly initiated around 0
with a standard deviation of 0.01. The output layer
uses a softmax function to predict the probability of
the next character. During the testing phase, these
probabilities are used to pick the next character and
the result is once again feed into the network.

The significant hyper parameters are listed below:

• Hidden Layer Size (256) - Number of LSTM
nodes in each of the hidden layers.

• Number Hidden Layers (4) - Number of
hidden layers.

• Batch Size (64) - Number of sequences for
each training iteration.

• Time steps (256) - Length of the character
sequence used during training.

• Loss function (softmax with binary cross en-
tropy) - Function used to determine the weight
adjustments for the back-propagation pass.

During the testing phase, character sequences of
length 2000 are generated with the seed “#include
”

4 Results
The figure below shows the loss function during
the training phase. We can observe how the error
converges around 0.7. In total it took 9.53 hours to
train the model with a limit off 50000 batches.
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Figure 5: Error value over batch number. The x-axis
corresponds to training iterations and the y-axis,
the loss. Lower loss is better.
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Below are sequences generated with the model. For the sake of readability is a full output sequence
included as Appendix A.

1 #include <linux/vector.h>
2 #include <linux/fs.h>
3 #include <linux/rstab_lock.h>
4 #include <linux/platform_image.h>
5 #include <linux/pci.h>
6 #include <linux/topolution.h>
7 #include <linux/mm.h>
8 #include <linux/init.h>
9 #include <linux/init.h>

10 #include <linux/irq.h>
11 #include <linux/init.h>
12 #include <linux/device.h>
13 #include <linux/platform_data/usb-outkhake.h>

The listing above show how the model have predicted a set of include definitions. Notice how many
includes are repeated but correctly formatted.

1 /**
2 * enable_single_stepdatormance_regs()) for
3 * @sg: "problem" the access a pointer of reset has a rounding.
4 * @kunotbgeWalreaschdr_info: The record for MMIO PLL core written by the id
5 * @regs: Process pointary
6 *
7 * Copyright (C) 2010, Gregen Andrs Culd <sholk@deak2.c
8 */

The above listing shows a multi line comment with a copyright notice included. Each line starts with a
“*” which is not required by the C definition but a common practice.

The content following output is a function declaration with a repeated parameter list, void return type
and bitwise operations. We can also observe pointer arithmetic and constants written in UPPERCASE.

1 void kvm_err_exception_task(struct kvm_vcpu *vcpu,
2 struct kvm_vcpu *vcpu)
3 {
4 struct kvmppc_get_krc_page (bfin_read12s, &timer_emulator);
5
6 pmces = regs->uregs[power] & (HPTE_V_H | LOCOCON_FLUST | COMPAT_HWCAP_B) |
7 pfm_states->controllers_mask[i];
8 }
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5 Discussion and Conclusion
Looking at the source code generated by the model,
we can observe how it generalizes some trends in the
C syntax, such as opening and closing block com-
mends. It does not however keep track of variables
in scope, resulting in variable names which are not
declared. Even though it is clear that the model
generalized some aspects of the source code. It can-
not generate anything more coherent than isolated
clauses. Given that the input was a combination of
many contextually different parts of the source code,
the problem of keeping variables in scope might be
explained.

Below is a listing where a excerpt of the training
data is shown. The model generate sequences which
are incredibly similar on a visual basis:

1 /**
2 * smp_show_cpu_info - Show SMP CPU

information
3 * @cpu: The CPU of interest.
4 */
5 static void __init smp_show_cpu_info(int

cpu)
6 {
7 struct mn10300_cpuinfo *ci = &cpu_data

[cpu];
8
9 printk(KERN_INFO

10 "CPU#%d : ioclk speed: %lu.%02
luMHz : bogomips : %lu.%02lu\n",

11 cpu,
12 MN10300_IOCLK / 1000000,
13 (MN10300_IOCLK / 10000) % 100,
14 ci->loops_per_jiffy / (500000 /

HZ),
15 (ci->loops_per_jiffy / (5000 /

HZ)) % 100);
16 }

Surprisingly, the model generalized the fact that
within comments, the character sequences are closer
to human languages instead of source code. This
would be interesting if one were to create a classifica-
tion model instead, differentiating between natural
and programming languages.

It is also possible that the by-character approach
to sequence generation might be to primitive for
the net size and time constraints of the project. A
better approach might be to group characters into
semantically relevant words. This would result in a
much larger input and output vector but would put
less pressure on the model to both generalize both

the language grammar and semantics.
The size of the model was limited by time and

computational constraints on the project. Better
hardware may allow for larger models which per-
forms better.

In conclusion we can say that although the result
looks promising at a cursory glance, the technique
is far from able to produce valid C source code. Pre-
vious studies have shown that RNN models using
LSTM are incredibly powerful[2] (in fact, Turing
complete [6]) but suffers from the same problem
as other deep learning models, computational time
and access to labelled data. Perhaps in one or tow
AI winters the technique is closer to compete with
humanoid software developers.
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A Predicted Model Output

1 #include <linux/suspend.h>
2 #include <linux/intspec.h>
3 #include <linux/types.h>
4 #include <linux/input/master.h>
5 #include <linux/mtd/physmap.h>
6 #include <linux/platform_data/usb-ohci-pxa.h>
7 #include <linux/platform_data/irda-pxaficp.h>
8 #include <linux/platform_data/usb-ohs/n4";
9 elak_def:

10 switch (flubly) {
11 wakeupgen_worksz[0] = AR2315_PWRCAML_GE_CONF ^ EMWEL;
12
13 /* restoring the soc timer is written. */
14 struct omap_dm_timer *ops = &s3c_i2c3_irq_mask, &ids[1];
15 phy_device_config.s.mrite = 0;
16 #ifdef CONFIG_SOC_CTS intcsp(void)
17 unsigned char buf[138];
18 omap_prcm_init();
19 if (!data) {
20 pr_err("FAIL: Code == marked states\n");
21 mv74xx_cb58080 = 1;
22 machine_has_cpumask_init();
23
24 switch (reg) {
25 __asm__ volatile("mrc != "n2"); \
26 { MCA_IAR4--, }, \
27 /*
28 * Permatchs. This kernel with the dma_1
29 without interpreter-signals" max/diggeciun/bits called.
30 * xQlist on the intended
31 boot/timer in the temporary process TLB and we posts
32 warn-at percpu to a fec/mask. Performs over this and sigbus
33 * shift. Enable works mode:
34 */
35 if (writeb(data & (PAGE_SHIFT) >>
36 (H_PAGE_BUSX)) {
37 const int yev;
38 }
39
40 if (count < (unsigned int)-1) {
41 return -EPERM;
42 }
43
44 /* preserve variation is only early in hardware */
45 *val = 0;
46
47 /* Cliculition state to be only only courity */
48 if (!value) {
49 ret = -ENOENT;
50 goto pc_mbus;
51 }
52 pgprot_noncached(vaddr); /* unless the point it setting to one. */
53 if (PAGE_ALIGN(addr < mm)) {
54 /* and this fun the pgd type bit 0 */
55
56 flush_altivec_to_thread(ptep);
57 Bstackptep(start, pte, transto_gid, fn);
58 }
59 tlb_destination_t nat;
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60 };
61
62 void kvm_err_exception_task(struct kvm_vcpu *vcpu,
63 struct kvm_vcpu *vcpu)
64 {
65 struct kvmppc_get_krc_page (bfin_read12s, &timer_emulator);
66
67 pmces = regs->uregs[power] & (HPTE_V_H | LOCOCON_FLUST | COMPAT_HWCAP_B) |
68 pfm_states->controllers_mask[i];
69 }
70
71 static void __init hub_rt_read_match(ptr, size_t ptr, unsigned long r5, unsigned int n_ap,

unsigned char *dprom)
72 {
73 u32 range_index; "insn2", &dstptr->tlbsize);
74 unsigned int *mask = 4;
75 unsigned int long long r3, r6;
76 struct rtc_type data;
77 #ifdef CONFIG_VOLPAIRENTEDERS
78 unsigned int bounce;
79 unsigned long sp; /* SCXE1> *soctable is programmy */
80 unsigned int mask, cache = 0, result = 0;
81
82 /* Set D error taken bit */
83 while (state->last_insn == 0) {
84 union cvmx_pko_denormal32 attr;
85 struct uasm_ral update_reg = val |
86 SYS_RESVOLG_EN_IP20 | FRV_DMA_CAP_USATEV | ARMV6_PF0_USE_PPS_OFF;
87 scuproves_type = REG_TJSCR;
88 cnstcr = 0;
89 /* Passes to save dive bit */
90 result.s.len = 0;
91 res = 0;
92 BUG_ON(dstk != oud);
93 if (r_exponent != state.fpu_free_x5)
94 return x faul;
95 BUG_ON(ctx->ram == (int)Multiplely A not set\n");
96 return;
97 }
98
99 if (reg.s.mask || !9) {

100 current->thread.dsp_context[EXTBASEt_exponent(src)].fSignandrate *dsend =
101 (insn.format.f) != -1 ? ’U’ : ’\’H’\3a, 59, 80+8); /* dst */
102 __x3 += SB_n = (MIPSInst_RT(ir): count > 0 || x != 0x7FFFFFFF);

\
103 prog->source = netrof_vector_typ; bot++; \
104 } \
105 I_r32rap \
106 \
107 write_gc0_guest_config(str, ctx); \
108 } while (0)
109
110 #define FLASH_BL 0x1c /* #slave and R9 */
111 #define RECOR ? 1
112 #define FPSR_F1 0xf
113 #define SETNAT_IO_SHARED 0x40
114 #define SETXER_CTLB 0x00000000 /* 0000 %016> -> QRR x12 buf *xics,bchip@asm*\n");

\
115 enet150 */
116 static int rb532_register_devices[] __initdata = {
117 &s3c_device_attribute, {
118 .virtual = Paulbase,
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119 .collistrate = kvmppc_pa01_ops =
kvm_mips_dequeue_irq,

120 .existat_bits = 1,
121 },
122 #endif
123
124 /* .SigN machine data flash, thus priority, if not the PCI interproc’llads */
125 mdelay(1);
126 while (PWMCTL_PAR_PB(pd) {
127 pdata = kzalloc(PCMCLK_H1, handle_backlight);
128 mdelay(10);
129 gdbstub_alloc(&dev->resource[0].page, 0);
130 res->end = ARM_BREAKPOINT_W;
131 gfp &= ~GFC_RWSTCTRL;
132 } else {
133 self_pte = mmu_valid_address);
134 ret = efi_map_start - tlbmiss_size;
135 }
136 if (!prom_argv) {
137 prot = PTRS(pteg, (u32) PAGE_ALIGN(vmap),
138 size, pgprot_val(pgprons[0]);
139 __halted = 1;
140 _mmio_unuter_cache_tag[0].prot / bitshiftb1;
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