
Modelling NPC perception using
supervised learning

Martin Estgren
<martin.estgren.2093@student.uu.se>

Uppsala University, Sweden

October 23, 2021

1 Introduction
Manygames today employ visual perceptionmodels for non-playable characters
(NPCs) as a way to improve player immersion, where the NPC gives of the
illusion of being able to visually perceive the player in the environment. This
is usually done through techniques such as geometrically defined vision zones
and line of sight estimations using ray-tracing (M. Walsh 2014 [1]).

Games like Splinter Cell: Blacklist (M. Walsh 2014 [1]) employs sophisticated
perception models in order to give of the illusion of NPC cognition and aware-
ness of the player, and it’s actions.

In this project, I examine the possibility of using a supervised learningmodel
to approximate these vision models by creating a dataset of situations where a
given NPC should be able to perceive the player, and situations where it should
be unaware. This dataset will then be used to train a feed forward neural network,
which the NPC will query during play-time to get an estimate of how well it’s
supposed to be able to perceive the player.

2 Implementation
The game is implemented in the Godot engine with scripting and game-logic
written C#. The perception data is gathered from the render and physics API
of the Godot engine, while the perception estimation model is implemented in
Pytorch. All source code is included with this report.

2.1 Perception model
For the sake of simplicity, theNPCperceptionwill bemodelled as three variables:

2.1.1 Distance from NPC to the player

The distance is estimated by taking the euclidean distance between the center
points of theNPC and the center point of the player, and clamping to amaximum
length of 200 units. This distance is then divided by 200 to get a normalized

1

mailto:martin.estgren.2093@student.uu.se

distance value in [0,1]. The full expression can be seen in Equation: 1.

max

(
min

(��®xplayer − ®xNPC
��

200 , 1

)
, 0

)
(1)

, where ®xplayer is the player’s position, and ®xNPC is the position of the NPC.

2.1.2 Relative bearing between the NPC and the player

The relative bearing is estimated by taking the previous distance vector’s angle
in relation to the heading unit vector the NPC (the Up vector rotated to the same
angle as the heading of the NPC). The full expression can be seen in Equation:
2.

arccos
(®xplayer − ®xNPC

 · ®rNPC
)

(2)

, where ®rNPC is the normalized heading of the NPC.

2.1.3 Ray-traced line of sight estimation

Line-of-sight is the most complex vision component, but also very important.
A NPC that can detect an occluded player will feel very unrealistic and break
the player’s immersion. It’s calculated by ray-casting from the NPC’s position
to a set of pre-defined points on the player model. Figure 1 shows how the
pre-defined points are placed on the player. The final line-of-sight estimation is
the ratio of rays that hit the player given the number of points that we tried to
raytrace to.

(a) Fully visible (� 1) (b) Partial occlusion(∼ 0.5) (c) Fully occluded (� 0)

Figure 1: Different levels of player occlusion. The player is represented the
rightmost circle and the NPC is the leftmost one. The blue points on the player
represents pre-definedpoints thatwill help in determining theplayer’s occlusion
relative to the NPC.

2.2 Approximate the perception model
With these perception factors combined,we canmodelmany perceptionmodels.
For the purpose of this project, I model a rudimentary detection model, where
these measures are acts as input to a feed forward neural network, which outputs a
value p ∈ [0,]. This value p indicates how fast the NPC should detect the player.
0 means that the NPC is unaware of the player’s position, while 1 indicates that
ht the NPC is fully aware of the player.

2

2.3 The neural network model
The neural network model is implemented in Pytorch and communicates with
the Godot engine through an HTTP socket. The model is fairly simple, given we
only have 3 input features. The model contains of 3 layers with ReLU activation
functions, and the output layer outputs a single value using a sigmoid activation
function. The output value corresponds to an approximation of p. The model
can be viewed in Listing: 1.

Listing 1 Pytorch model
1 import torch
2 import torch.nn as nn
3
4 in_shape = 3
5 model = nn.Sequential(
6 nn.Linear(in_shape ,16),
7 nn.ReLU(),
8 nn.Linear(16,32),
9 nn.ReLU(),
10 nn.Linear(32,64),
11 nn.ReLU(),
12 nn.Linear(64,1),
13 nn.Sigmoid()
14)

2.4 Final NPC awareness model
To provide a more interesting and temporally consistent model, I do not model
the NPC’s perception directly from pt instead, I create a new value Pt which
uses the awareness value pt as a velocity together with a decay value d � 1 on
the form represented in Equation: 3 and 4.

dst �

{
5pt if pt > 0.2
−d else

(3)

Pt+1 � max (min (Pt + dst , 1) , 0) (4)

This way, we get more consistency over consecutive frames. This also helps
smooth out the sampling, as we only query for a new perception measure p
every 20ms.

3 Results
To show the generalizability of the model, the model was evaluated using two
different datasets, one where the player should be detected while not occluded
and in-front of the NPC (regular detection model), and one dataset where the
player should only be perceived while occluded and not in-front of the NPC (Inverse
detection model).

These models are trained on their respective datasets, and compared using
both in-game testing (the attached video), and diagnostics graphs, presented in
this section.

3

3.1 Regular detection model
Looking at figure 2 and 3,we can observe in both the accuracy score of the trained
model, and the loss score over training iterations, that the model is learning an
approximation of our desired reception model.

Performing a grid-search over line of sight and relative bearing, We can also
observe in Figure 4 how it didn’t quite predict 0 for all cases of line of sight being
equal to 0 but have a lower value for those cases compared to higher line of sight.

Figure 2: Predicted result (blue) over all cases in the training dataset compared
to the expected result (orange).

4

Figure 3: Training loss over training iterations. Loss is calculated using mean
square error.

Figure 4: Predicted player awareness over line of sight ratio and relative bearing
grid. Blue indicates low values while yellow indicates values close to 1

5

3.2 Inverse detection model
As we could see for the regular detection dataset, the model is able to approxi-
mate our desired perception model. Figure 5 and 6

Figure 7 shows that the model has generalized the idea that the player only
should be perceived when not occluded and in front of the NPC.

Figure 5: Predicted result (blue) over all cases in the training dataset compared
to the expected result (orange).

6

Figure 6: Training loss over training iterations. Loss is calculated using mean
square error.

Figure 7: Predicted player awareness over line of sight ratio and relative bearing
grid. Blue indicates low values while yellow indicates values close to 1

7

4 Conclusions
In conclusions, we can see that my approximation model is able to both approx-
imate wildly different perception models compared to what is commonly used
in games, and begin able to provide a reliable and more traditional perception
model.

In total, the project resulted in:

• Around 300 lines of Python code with a bespoke neural network model
written in Pytorch served over HTTP.

• A Godot project using the built-in scene editor, renderer, physics system,
pathfinder, and ray-tracer.

• Around 700 lines of C# code for all game logic and marshalling of data
between the game and the Pytorch model.

• More time wasted on debugging the interface between Godot and the
Flask server than I care to admit.

References
[1] M. Walsh. Modeling ai perception and awareness in splinter cell: Blacklist.

In Proceedings of the Game Developers Conference (GDC), 2014.

8

	Introduction
	Implementation
	Perception model
	Distance from NPC to the player
	Relative bearing between the NPC and the player
	Ray-traced line of sight estimation

	Approximate the perception model
	The neural network model
	Final NPC awareness model

	Results
	Regular detection model
	Inverse detection model

	Conclusions

