
Hierarchical task network planning for
multi-agent robotics

Martin Estgren
<mares480@student.liu.se>
Linköping University, Sweden

May 30, 2018

1 Introduction
There are many different approaches to automated planning varying from the
classic STRIPS framework to probabilistic and temporal planning systems. In
this project the performance of autonomous planning using Heirachcial task
network (HTN) for a multi-agent robotics domain is examined in regards to
execution time and plan quality.

The structural base for this project is the Robot Operating System (ROS) in
conjunction with the MORSE simulation environment. ROS provides a frame-
work for passing messages between so-called ROS Nodes over a networked proto-
col. MORSE is a robotics simulation environment build on top of Blender which
provides integration with ROS.

Heirachcial task network planning is a large research area in of itself and has
been examined both in concrete and theoretical applications, for more info on the
topic, see K. Erol et al. [1]. The focus of this paper is on the Simple Heirachcial
Ordered Planner (SHOP), a HTN planner developed by D. Nau et al. [2] as a
solution to other planners computational resource requirement. SHOP has seen
some evaluation in multi-agent systems [3] despite its single-agent design. A
popular alternative, and predecessor to HTN planning is the STRIPS family of
planners.

STRIPS is one of the oldest autonomous planning systems, first presented
in 1971 by R. Fikes and N. Nilsson[4] and although the basic concept has been
the same, there have been significant extension proposed. PDDL was presented
in 1998 [5] as a attempt to unify typical planners at the time. PDDL uses
world-state and operator structure similar to the one in STRIPS. PDDL has
seen research within multi-agent domains, to the point oh having a language
extension specifically for that purpose [6].

Similar to PDDL, SHOP have operators on the form Precondition followed
by a list of changes which are applied to the world-state if the Preconditions
holds for the current world-state.

In addition to operators, a SHOP domain is defined by a set of tasks. Tasks
contains multiple sets of Precondition where each set corresponds to a sequence
of tasks and/or operators. Based on these sub-sequences, the task is split into
the two categories composite and primitive.

Tasks which only contains sequences of operators are categorised as primitive
tasks. Tasks which contains at least one subtask are categorised as composite

1

mailto:mares480@student.liu.se


and serves as the structure which constrain the search procedure. The structure
of operators, primitive tasks, and composite tasks can be seen in figure 1, 2, and
3 respectively.

Figure 1: Structure of
an Operator.

Figure 2: Structure of
an Primitive Task.

Figure 3: Structure of
an Composite Task.

What differentiates SHOP from other HTN planners is its search procedure,
where a depth-first approach is used, resulting in plan generation moving from
the initial world-state towards the goal-state. This is different to the partial-
ordered plans produced by other planners at the time [2]. An advantage with this
method is that at any moment during the planning procedure, the world-state is
fully known. In figure 4 an abstract representation of the way SHOP performs
a search is presented.

Figure 4: Example of a SHOP search procedure. Circles represents world states
and actions (o) are produced in the order of the large arrow.

2 Method
In this section the ROS integration, planning system, and evaluation method.
The ROS integration part describes custom ROS nodes and the planning system
describes the planning domain which serves as base for the result and discussion
sections.

2



ROS integration
Three separate ROS nodes are developed for the purpose of this project. Each
responsible for a high level function required to simulate the search and rescue
scenario.

• Quad Controller - Acts as internal controller for a single quad using a state
machine.

• Quad Planner - Provides plans for available quads. Interfaces with pyhop
for plan production.

• Location Broadcast - Keeps track of spatial regions which serves as victims
in the search and rescue scenario.

The ROS Topics each node interacts with can be seen in figure 5, 6, and 7
respectively. Arrows going into a node represents Topic Subscriptions, outgoing
Topic Publishers, and bidirectional ROS Services.

Figure 5: Topic interface
for QuadController.

Figure 6: Topic interface
for QuadPlanner.

Figure 7: Topic interface
for LocationBroadcast.

Domain definition
Support for autonomous planning is already integrated into the ROS ecosystem
though the package ROSPlan [7] but it is limited to PDDL 2.1 compatible plan-
ners. For the purpose of this project, SHOP is integrated into ROS using pyhop,
an implementation of SHOP in Python by D. Nau. One significant advantage
to pyhop compared to the original SHOP planner is that the symbolic inference
engine is traded for the full expressivity of the Python programming language.
The implemented planning domain is based on the Emergency Services Logistics
Domain used in the course TDDD48 for their lab-series.

Three operators are defined for the planning domain:

• Load - Quad loads one of some resource into its cargo hold.

• Move - Quad moves to a given location.

• Unload - Quad unloads on of some resource from its cargo hold.

All plans produced by the planner are defined as a sequence of operators, this
is done since the planner system is unable to directly affect the world state and
has to act thought the quads.

In addition to the operators, a set of tasks are defined:

• Deliver with quad - Pick a location which needs a given resource and execute
the sub-sequence Move, Load for, Move, Unload for.

3



• Load for - Load a given quad with as much as said quad can carry or until
the needs of the target location is fulfilled by the cargo of the quad.

• Unload for - Unload cargo from a given quad until either the locations
needs have been fulfilled or the quad is empty.

For a full overview of the produced planning domain, see Appendix A.

Performance Evaluation
Evaluation of the planning system is done by timing the time required for the
planner to solve a given problem. This is done though the construction of a
set of problem scenarios where the planner tasked with solving. The SHOP
planner is compared with a planner working with a relaxed planning domain.
The plans produced in the relaxed domain follow the same structure as the
complete domain but the amount of resources each quad is delivering to the
given locations is arbitrary.

3 Results
In this section we present the results produced during the project. The first
section presents a comparison between the SHOP planner and baseline planner.

Performance comparison
To examine performance, 4 different scenarios were use, varying in number of
quads and locations. Each scenarios is executed two times, one for the SHOP
planner and one for the baseline planner. In the table 1 the raw data for each
scenario can be observed.

Table 1: Raw data for performance comparison.

Time Quads Locations Capacity Planner Scenario
19.1518 4 6 4 Pyhop 1
23.1751 4 6 4 Random 1
35.7737 2 6 4 Pyhop 2
62.7879 2 6 4 Random 2
10.7904 2 3 4 Pyhop 3
19.9757 2 3 4 Random 3
21.9313 8 8 4 Pyhop 4
25.5463 8 8 4 Random 4

In figure 8 the relative performance of the planners can be observed. The
Quads, Locations, and Capacity columns are omitted from the figure since they
are the same for both planners.

4



23.1751

19.1518

62.7879

35.7737

19.9757

10.7904

25.5463

21.9313

0

20

40

60

1 2 3 4

Scenario

T
im

e

Planner

 pyhop

 random

Figure 8: Graph showing the difference between the SHOP and baseline planner.
Each group of bars represents a planning problem and each bar represents the
time taken for the different planners to complete said problem.

Plan production
An example of a plan produced by the planner is available in the listing 1. The
plan involves 4 quads which are tasked with delivering a variable amount of
resources (water) to 4 different locations.

1 Move quad1 to depot
2 Load quad1 with water
3 Move quad2 to depot
4 Load quad2 with water
5 Move quad3 to depot
6 Load quad3 with water
7 Load quad1 with water
8 Move quad0 to depot
9 Load quad0 with water

10 Load quad3 with water
11 Load quad1 with water
12 Load quad0 with water
13 Load quad3 with water
14 Load quad1 with water
15 Load quad0 with water
16 Load quad3 with water
17 Load quad0 with water
18 Move quad0 to location3
19 Unload water from quad0 at location3
20 Unload water from quad0 at location3
21 Unload water from quad0 at location3
22 Unload water from quad0 at location3
23 Move quad1 to location4
24 Unload water from quad1 at location4

5



25 Unload water from quad1 at location4
26 Unload water from quad1 at location4
27 Unload water from quad1 at location4
28 Move quad3 to location2
29 Unload water from quad3 at location2
30 Unload water from quad3 at location2
31 Unload water from quad3 at location2
32 Unload water from quad3 at location2
33 Move quad2 to location4
34 Unload water from quad2 at location4
35 Move quad0 to depot
36 Load quad0 with water
37 Move quad1 to depot
38 Load quad1 with water
39 Load quad1 with water
40 Load quad1 with water
41 Move quad0 to location3
42 Unload water from quad0 at location3
43 Move quad1 to location1
44 Unload water from quad1 at location1
45 Unload water from quad1 at location1
46 Unload water from quad1 at location1

Listing 1 Example of a plan produced by SHOP.

4 Discussion
In this section findings related to the project are presented followed by a conclu-
sion and potential future work.

Findings
There are two primary things to take away from the results. The SHOP planner
performs better in comparison to the baseline (as seen in figure 8). For half of the
scenarios presented, the time difference between the planners were a couple of
percent but for scenarios where the number of quads were limited (scenario 2 and
3), SHOP performed significantly better. The second significant observation is
that even if the planning system is sequential in nature, interleaved and efficient
plans can be produced as a result of the quads not travelling between locations
instantaneous.

Conclusion
During this project we have examined the performance of the SHOP planner
for planning in a multi-agent robotics domain. The result shows a decrease in
time required to fulfil a set of requirement for the given domain compared to a
simpler planning system. For problem scenarios where there is a excess of quads
compared to amount of resource which needs to be transported, both planners
perform close to each other.

Going into this project we hypothesised that the planning system would
aid in structuring the cooperating segment between agent and this is the result
observed in the results. Additionally, the planning system allows for seemingly
complex cooperating without significant changes to the on-board quad controller.

6



Future work
The reason for using a "relaxed" planning domain for the comparison is a result
of a completely random task execution for the agent resulted in minutes long
execution times, even for simple domains. This result was expected and not very
informative. The best evaluation procedure would be to compare the SHOP
planner with one in the ROSPlan package with regards to both plan execution
but also time taken to produce the plans.

The current implementation may not produce good multi-agent plans for
domains where mutually exclusive resources occurs. Such resources can result
in plans that are completely sequential since each agent is waiting for its turn
with the resource. The domain implemented in this project does not suffer
from this limitation since resources can be produced ad infinitum at the depot.
Other papers have come to similar conclusions, for example [3] where SHOP
is integrated with the IMPACT environment but the planner produces plans
in a sequential order. Possible workaround is to model the distributed nature
of multi-agent planning in the planning domain, resulting in a more complex
domain but with potentially better execution performance.

References
[1] Kutluhan Erol, James Hendler, and Dana S Nau. Complexity results for htn

planning. Annals of Mathematics and Artificial Intelligence, 18(1):69–93,
1996.

[2] Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. Shop: Sim-
ple hierarchical ordered planner. In Proceedings of the 16th international
joint conference on Artificial intelligence-Volume 2, pages 968–973. Morgan
Kaufmann Publishers Inc., 1999.

[3] Jürgen Dix, Héctor Muñoz-Avila, Dana S Nau, and Lingling Zhang. Impact-
ing shop: Putting an ai planner into a multi-agent environment. Annals of
Mathematics and Artificial Intelligence, 37(4):381–407, 2003.

[4] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the ap-
plication of theorem proving to problem solving. Artificial intelligence,
2(3-4):189–208, 1971.

[5] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. Pddl-the planning
domain definition language. 1998.

[6] Dániel László Kovács. A multi-agent extension of pddl3. 1. 2012.

[7] Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram Rid-
der, Arnau Carrera, Narcis Palomeras, Natalia Hurtos, and Marc Carreras.
Rosplan: Planning in the robot operating system. In ICAPS, pages 333–341,
2015.

[8] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory
and practice. Elsevier, 2004.

7



[9] Oliver Obst, Anita Maas, and Joschka Boedecker. Htn planning for flexible
coordination of multiagent team behavior. Fachberichte Informatik, pages
3–2005, 2005.

[10] Ronald Alford, Ugur Kuter, and Dana S Nau. Translating htns to pddl: A
small amount of domain knowledge can go a long way. In IJCAI, pages
1629–1634, 2009.

[11] Raphaël Lallement, Lavindra De Silva, and Rachid Alami. Hatp: An htn
planner for robotics. arXiv preprint arXiv:1405.5345, 2014.

A Search and Rescue SHOP domain

Figure 9: Search and Rescue domain implemented for SHOP

8


	Introduction
	Method
	Results
	Discussion
	Search and Rescue SHOP domain

