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Abstract
In recent years semantic segmentation models utilizing Convolutional Neural
Networks (CNN) have seen significant success for multiple different segmenta-
tion problems. Models such as U-Net have produced promising results within
the medical field for both regular 2D and volumetric imaging, rivalling some of
the best classical segmentation methods.

In this thesis we examined the possibility of using a convolutional neural network-
based model to perform segmentation of discrete bone fragments in CT-volumes
with segmentation-hints provided by a user. We additionally examined different
classical segmentation methods used in a post-processing refinement stage and
their effect on the segmentation quality. We compared the performance of our
model to similar approaches and provided insight into how the interactive aspect
of the model affected the quality of the result.

We found that the combined approach of interactive segmentation and deep learn-
ing produced results on par with some of the best methods presented, provided
there were adequate amount of annotated training data. We additionally found
that the number of segmentation hints provided to the model by the user signifi-
cantly affected the quality of the result, with convergence of the result around 8
provided hints.
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1
Introduction

Many problems within the field of medical imaging involves segmenting specific
parts of an anatomy from each other. Typical examples involves problems such
as segmenting cancerous tissue from surrounding healthy tissue, and separation
of distinct organs for diagnosis and treatment planning. Many of these problems
are either done manually by professional radiologists, or with classical image
processing algorithms such as: level-set, watershed, or clustering.

Accurate segmentation of bones in CT-volumes are of significant importance for
orthopaedic medical professionals, to help with diagnosis and surgical planning.
During the last decades, multiple potential solutions have been presented. Many
of them suffers from performance and reliability problems, related to advanced
pathologies and the image-quality of the CT-scans. As it is desired to limit the
dose of ionizing radiation used during clinical CT-scans, the image-quality is re-
duced, resulting in scans with lower signal-to-noise ratio.

1.1 Background
Sectra Orthopedic Solutions develops and markets a software suite with a seg-
mentation tool based on C. Wang and O. Smedby [26] which provides guides and
visual aids for orthopaedic professionals. This software is appreciated within the
clinical orthopaedic community but the current segmentation algorithm suffers
from the typical problem described above. As a result, there is an interest in
examining alternative solutions.

Some interactive segmentation methods such as the probabilistic watershed trans-
form [25] and fuzzy connectedness [26] have both seen some success in clinical
settings but both suffers to some extent from the above mentioned problems since
they operate in the gray-level image space without anatomical or shape context,
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2 1 Introduction

often resulting in segmentations with varying quality depending on the bone-
tissue density and signal quality.

Meanwhile exploration into deep learning based methods, specifically involving
Convolutional Neural Networks (CNN), have seen novel approaches reaching
cutting-edge results in medical imagining competitions and benchmarks [2], [20].
As a result, both the medical academic and industrial communities have shown
significant interest in the topic of deep learning for medical imagining during the
last couple of years [5].

Additionally, traditional interactive graph-cut based methods such as Y. Y. Boykov
and M-P Jolly 2001 [4] have seen promising results for segmentation problems
when combined with deep learning-based methods. One example is N. Xu et al.
2016 [27] who utilize a CNN model to produce a rough segmentation of a given
object, followed by a set of user-provided hints and a graph-cut based algortihm
for edge-refinement. The refinement is done since typical semantic segmentation
models often produces uncertainty around the edges of the objects [15].

Evaluation of segmentation tasks are often done by comparing evaluation metrics
oriented around the confusion matrix of a binary classifier, such as Intersection
over Union and Dice score. These metrics serves as the primary metrics for which
we examine the performance of our solution and are explained in greater detail
in Section 3.8.

1.2 Aim
The aim of this thesis is to examine the potential of combining user-interactions
with deep learning based segmentation methods, for the purpose of segmenting
bone fragments from surrounding soft- and bone-tissue. Ideally, the resulting
method should be able to serve as a robust and reliable segmentation model,
which can be used for clinical purposes, with minimal impact on the current
user-interface.

1.3 Research Questions
The following questions will serve as guides to structure the different parts of
this thesis:

1. How well does the model perform segmentation of bone-tissue in regards
to Intersection over Union?

2. How well does the model perform segmentation of bone-tissue in regards
to Dice Score?

3. Does the number of user-provided hints affect the segmentation performance
and in what way?

1.4 Delimitations
To keep the project within a reasonable scope some delimitations have been set:
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• Only user interactive deep learning based methods will be examined.

• Training and evaluation will only be done using CT-scans.

• Limitation on the size of the dataset to what can be reasonable be procured
during the project.

• We assume that the user-provided hints always are correct.

• Models, training, and evaluation is limited to the hardware available, for
this project a NVIDIA GTX 1080Ti.





2
Related Work

This chapter provides technical background to this thesis and describes the dif-
ferent components that will constitute the method, as well as some alternative
approaches. The first section describes classical interactive segmentation using a
graph-cut method (section 2.1), followed by an explanation of how typical CNN-
models are built (section 2.2), with some example implementations relating to
semantic segmentation (section 2.3). The chapter concludes with an explanation
of a combined model utilizing both graph-cut and a CNN which serves as ground
for the method (section 2.4).

2.1 Graph-cut segmentation
Y. Y. Boykov and M-P Jolly 2001 [4] present a method for interactive region seg-
mentation where the user manually marks a set of pixels as belonging to the cor-
rect segment, which acts as as hard-constraints for the remaining segmentation.
The remaining pixels are segmented by optimizing the function

E(A) = λ ·R(A) + B(A), (2.1)

where A denotes a potential class-assignment of all pixels, λ is the relative impor-
tance between boundary B(A) and region term R(A). The latter two are defined
as

R(A) =
∑
p∈P

Rp(Ap), (2.2a)

B(A) =
∑
{p,q}∈N

B{p,q} · δ(Ap, Aq), (2.2b)

5



6 2 Related Work

with P denoting the set of all pixels, N the set of all edges, Rp the region term
for pixel p, B{p,q} the boundary term for a pixel p and a neighbouring pixel q. The
function

δ(Ap, Aq) =

1 if Ap , Aq
0 otherwise

(2.3)

defines a discontinuity measure where neighbouring pixels, which have the same
assignment, do not require the boundary term to be computed.

The region term Rp(Ap) provides a measure of how well the given pixel p belongs
to the foreground and background segments. This can be done in a multitude of
ways, Y. Y. Boykov and M-P Jolly 2001 [4] give the example of a measure of how
well a given pixel intensity fits into a known intensity model. One example is

Rp(Ap) =

− ln P (Ip |O), if Ap = ”obj”
− ln P (Ip |B), if Ap = ”bg”

. (2.4)

That is, the negative log-likelihood for p belonging to the ”obj” set or ”bg”, where
Ip indicate pixel intensity, O representing all pixels manually assigned as ”obj”,
and B all manually assigned as ”bg”.

The boundary term B{p,q} describes the relative difference between the neighbour-
ing pixels p and q to create a boundary between the segments, where there is
a large discontinuity in the pixel intensity. E. N. Mortensen and W. A. Barret
1998 [21] provide a number of examples of such functions, for example

B{p,q} ∝ exp

− (Ip − Iq)2

2σ2

 ·
1

dist(p, q)
, (2.5)

where σ denotes some form of sensor noise and dist(p, q) corresponding to a dis-
tance metrics, such as euclidean distance.

The E. N. Mortensen and W. A. Barret 1998 [21] names the Ford-Fulkerson graph-
cut algorithm presented by L. Ford and D. Fulkerson 1962 [9] as the most straight-
forward way to find the optimal segmentation A. The segmentation problem
is concretized through a graph-representation of the image, where each pixel
denotes a node and where each node has a directed link to all neighbouring nodes.
Additionally, each node has an incoming edge from a node denoted as source (S)
and an outgoing edge connected to a node denoted as sink (T ). Note that these
two nodes are not part of the image but represents the two sets each pixel may be
assigned. Figure 2.1 shows a small example how a typical edge-cut is performed.

The Ford-Fulkerson algorithm finds the optimal set of edges to cut in order to
separate the source and sink nodes from each other. This is achieved through
the use of the max-flow min-cut theorem, which states that when the graph is
considered as a flow-network, the maximal flow is equal to the capacity of the
minimal cut. All edges in the problem are defined in Table 2.1.

The first type of edge {p, q} indicate the weight for edges between neighbouring
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Figure 2.1: Visual example of how a typical graph-cut segmentation of an
image is done. The black line indicate the cut between the object and back-
ground. Blue and red edges gets their weights from the region term (2.4),
while green edges gets their weights from the boundrary term (2.5).

edge weight for

{p, q} B{p,q} {p, q} ∈ N

{p, S}
λ ·Rp(”bkg”) p < O ∪ B

K p ∈ O
0 p ∈ B

{p, T }
λ ·Rp(”obj”) p < O ∪ B

0 p ∈ O
K p ∈ B

Table 2.1: Table of how edge-weights are calculated according to Y. Y.
Boykov and M-P Jolly 2001 [4]. The table shows how the edge-weights
should be calculated depending on the type of edge.

pixel nodes. These are always taken from the boundary term (2.5). Edges de-
fined as {p, S} indicate the weight for edges between pixel nodes and the source
S. These are defined differently depending on the whether the pixel node p is set
by the user as a marker or not. If p is not a marker, the weight is calculated from
the region term (2.5). The final type are edges between pixel nodes and the sink
T where, as with edges between {p, S}, the weights are dependent on whether the
user has marked them as either object or background. The special weight K is
defined as

K = 1 + max
p∈P

∑
{p,q}∈N

B{p,q}, (2.6)

which is used to prevent an edge between a marked pixel and its corresponding
segment to be cut. The cut is computed by finding the path with the maximum
sum over the edges in the path.
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Figure 2.2: Example of a Convolutional Neural Network (CNN) designed to
perform digit recognition. The input is a 28 × 28 gray-scale image of a 7, the
output is a vector of 10 elements where each element denotes the conditional
probability of the input representing either of the numbers {0, 1, 2, ..., 9} de-
pending on the specific input image.

2.2 Convolutional Neural Network
Convolutional Neural Networks (CNN) are a family of deep learning classifica-
tion/regression models which employ convolution operations in some of its lay-
ers. As described in I. Goodfellow et al. 2016 [10] this makes them significantly
more effective on data where the spatial relationship between data points are im-
portant, such as time-series, image data, or volumetric data. Figure 2.2 shows
a structural overview of a typical CNN which perform digit classification. The
model consist of two convolutional layers with a max-pool layer after each other,
followed by a multi-layered perceptron with a softmax output. The dataset used
is the MINST [18] dataset.

The typical classification model is split into two parts. The first part, Feature
Extraction, consists of a set of layers which transforms the input data into a higher
dimensional feature space. One example is a transformation from pixel values
into a feature space defined as a set of differently oriented edge-detections. The
feature extraction is often implemented using convolutional and pooling layers,
which are described in Section 2.2.1 and 2.2.4, respectively. The second part,
classification, is often a regular Multilayer Perceptron (MLP) which is fed the
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new feature space, and produces the final classification.

The efficiency of CNNs comes from the use of shared weights in the convolu-
tional layers, which drastically reduces the size of the model. This property helps
with keeping the number of weights significantly smaller than a comparable MLP
model, resulting in a more efficient model-fitting.

2.2.1 Convolutional Layers
Convolutional layers are the cornerstone and most prominent feature of a CNN.
In this section, the structure of a convolutional layer , the convolutional operator
for 1, 2, and 3 dimensions, and how the output is transformed into a higher di-
mensional feature-space, using a non-linear activation function, will be defined.
Convolution
In mathematics, the discrete version of the convolution operator is defined as the
combination of two functions (f and g) on the form

(f ∗ g)(t) =
∞∑

x=−∞
f (t − x)g(x), (2.7)

where f (t − x) denotes a weighted average of f (x) at a given offset t, such as the
value of a time-series at time t. The function g is often denoted kernel and the
output is often denoted feature map. Convolution for two and three dimensions
have the respective definitions

(f ∗ g)(i, j) =
∑
x

∑
y

f (i − x, j − y)g(x, y), (2.8a)

(f ∗ g)(i, j, k) =
∑
x

∑
y

∑
z

f (i − x, j − y, k − z)g(x, y, z). (2.8b)

When working with discrete convolutions in 2- and 3D space, specifically for im-
age processing, the function can be interpreted as an operation on matrices. This
is done by interpreting the offset t as the element offset in the matrix f where the
transpose of the kernel g is applied. In practice, the convolution is implemented
as a cross-correlation, i.e. the kernel is not transposed. How convolutions can be
performed as matrix multiplication is described in Appendix B.

Border elements in f requires a policy about how to process sums of elements
outside f , typical solutions involves zero-padding, reflection, or border repeti-
tion. For this thesis, it is enough to consider zero-padding, where the border of
the input is padded with elements of value 0. The coefficients which represents
the kernel are the values which are tuned in a CNN during the training phase. In
addition to the kernel g, each convolutional node contains a bias-weight which
acts as an offset on the feature map to shift the curve of the activation function
either left or right.

2.2.2 Strided Convolution
Strided convolution is defined as

(f ∗l g)(t) =
∑
x

f (lt − x)g(x), (2.9)
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where l indicate the stride i.e. the size of the offset. When l = 1 the strided
convolution is equivalent to a regular convolution. The output feature map is
smaller than the input by a factor which is the same as the number of strides. As
an example: an input of dimension 16 × 16 convolved with a kernel and a stride
of 2 would result in an output feature map of size 8 × 8.

The term dilated convolution is sometimes used and differs from the strided
convolution in that t is applied to x instead of t. If padding is added between
elements in the input image, fractional strided convolution can be performed,
resulting in a feature-map larger than the size of the input image.

2.2.3 Activation Function
The activation function serves as a way to introduce non-linearity into the net-
work. In the typical convolutional layer, the activation function is applied to the
output feature map to provide a non-linear transformation to a higher dimen-
sional feature space. The full function with both convolution and activation is

σ ((f ∗ g)(t)) = σ (
∞∑

x=−∞
f (t − x)g(x)), (2.10)

where σ denotes the activation function. Traditionally a sigmoid function such
as the hyperbolic tangent is used as activation function (Figure 2.3a). Two of the
primary drawbacks when using a hyperbolic tangent is the computational cost
and the vanishing gradient problem [3], in which, the tuning of a given weight is
proportional to the partial derivative of said weight in the error function, result-
ing in weights of the first layers in a model, always being tuned less proportional
to the weights in the final layers. K. Jarrett et al. 2009 [14] show that the recti-
fied linear unit(Figure 2.3b), abbreviated as ReLU, often preforms better for CNN
models. Therefore the sigmoid is in many cases replaced with a ReLU, which has
more desirable properties, both in therms of the vanishing gradient problem and
computational complexity.

(a) Hyperbolic Tangent (b) Rectified Linear Unit

Figure 2.3: Example of the two typical activation functions used for CNN.
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2.2.4 Pooling Layers
Pooling layers perform spatially constrained statistical summaries on the input
feature map, reducing the output resolution, while at the same time preserving
relevant features from the previous layer. I. Goodfellow et al. 2016 [10] describe,
in Section 9.3, how the typical pooling layer is constructed, and how it often is
imposed between consecutive convolutional layers. This reduces the amount of
parameters in a given model, and consequently the risk for overfitting.

The typical pooling layer have two parameters

1. Kernel size: Indicates the size of the kernel used during the pooling opera-
tion.

2. Stride: Dictates the number of elements the kernel jumps during computa-
tion.

The kernel size additionally provides the size of the bins for which the maximum
element is picked from.

In the typical max-pooling (Y. Zhou and R. Chellappa 1988 [30]) layer, only the
largest value for each kernel placement is saved, resulting in a down-sampling of
the input feature-map by the value of the stride parameter. For example, stride =
2 means the output feature-map will be half the size of the input. Figure 2.4
provides an example of how a typical max-pooling is performed.

Figure 2.4: Example of a max-pooling with kernel size = 2 and stride = 2.

2.2.5 Loss Function and Learning Process
The loss function is used to measure how well the model predicted the output. It
also serves as the base for the learning process, where the weights of the model
are tuned to produce a lower loss score. The learning process is done through
back-propagation using gradient descent, where a given weight in the model is
tuned based on the partial derivative

∂E
∂W

, (2.11)
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on the form ∆W = −N ∂E
∂W , where W is a given weight, N is a learning rate, and

E is the loss function. For an in-depth explanation and a full example, see I.
Goodfellow et al. 2016 [10] Chapter 6.5.

When producing the final predicted class assignments for binary segmentation
tasks, the sigmoid function

p(y = ’obj’) = sigmoid(x;W ) =
1

1 + e−W T x
, (2.12)

where W are the weights for the output neuron, is often used.

When the prediction is done for a multi-class problem, i.e. the desired output is
a vector of probabilities, the softmax function

p(y = n) = softmax(x;W ) =
eW

T
n x∑K

k=1 e
W T
k x
, (2.13)

where n dictate the probability for the nth class, is used instead. In the case of
Figure 2.2, there would be 10 classes.

Cross-entropy is often used as loss function for the training process. This is done
as it provides an approximative analogue for evaluation metrics such as Dice
score or Intersection over Union, while being computationally simpler.

The accumulated cross-entropy is calculated for each input image as

− 1
N

N∑
n=1

ynlogŷn + (1 − yn)log(1 − ŷn), (2.14)

where ŷ denotes the predicted class, N the length of the output vector, and y the
annotated ground truth.

2.3 Segmentation using Deep Learning
In this section, segmentation with CNN models is described, by looking at three
different network architectures. In a typical classification model an image is
remapped to a single value describing the class assignment for the input. Seg-
mentation models, on the other hand, try to to get a class assignment for each
pixel in the input, not only indicating the class assignment for the entire image.
In most cases, this is done by replacing the classification part of the model with
additional convolutional layers. In general, this can be seen as the model outputs
a higher-dimensional feature map, where each feature represents a probability
for a given class-assignment for the corresponding input features. An example
of how such a feature map looks like can be seen in Figure. 2.5, which shows an
image of a lumbar vertebrae with the feature-map indicating the predicted class
assignment.
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(a) Image Slice (b) Class Prediction

Figure 2.5: Example of an image slice with a corresponding class prediction,
providing the predicted class for each element.

2.3.1 Fully Convolutional Network
The Fully Convolutional Network (FCN) is one of first network architectures de-
veloped specifically for semantic segmentation tasks. It was presented by J Long
et al. 2015 [19] as a CNN model where the entire network architecture consists of
convolutional and pooling layers. Then the network produces a feature map indi-
cating probabilities for each pixels class assignments, but at a reduced resolution
compared to the input. J Long et al. 2015 [19] propose a way to remap the output
to the input resolution involving interpolating the lower resolution feature map
by either applying fractionally strided convolutions or performing up-sampling
with e.g. bilinear interpolation. Figure 2.6 shows the stacking of layers in the
model and how feature-maps from the down-sampling and up-sampling parts
are combined in order to provide the final segmentation.

Given the nature of stacking pooling and convolutional layers, spatial locality
is lost as the number of layers increase. To combat this, FCN combines outputs
from shallow layers with up-sampled deeper feature maps to provide outputs of
higher resolution. That is, given the segmentation problem at hand, the user may
trade segmentation precision with the size of the model.

2.3.2 U-Net
U-Net was first presented by O. Ronneberger et al. 2015 [23], and then extended
into 3D by Ö. Çiçek et al. 2016 [11]. U-Net was developed specifically with seg-
mentation of medical images in mind, where the images consist of highly regular
structures. The original paper by O. Ronneberger et al. 2015 [23] used the model
to segment cells in neuronal structures [2], placing first in the benchmarks.

The architecture of the model was initially based on the FCN model, but the
inclusion of skip-connectors and a large amount of feature-channels in the up-
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Figure 2.6: Reference architecture for the typical FCN model. Note that
three different outputs are generated where (FCN-32s, 16s, and 8s) where
the number indicate the amount of up-sampling needed to match the input
size.

sample part, allows for information propagating from the different down-sample
levels. In contrast to the regular encoder-decoder model where the up-sampling
have to be done using only the bottleneck feature-map. Figure 2.7 provides a
visual representation of the regular U-Net architecture. Note how smaller feature
maps are concatenated in the up-sample stage, compared to the summation used
in FCN.

O. Ronneberger et al. 2015 present a weighted cross-entropy loss function de-
signed to punish erroneous segmentations in the border between cells. In addi-
tion to the modification of the architecture and the custom loss function, the pa-
per also presents a set of model regularizing data augmentation methods which

Figure 2.7: Reference architecture for U-Net. C indicate channel-wise con-
catenation of feature maps.
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are applied to the training dataset. The authors puts heavy focus on the elas-
tic deformation augmentation model where a given input sample is slightly dis-
torted to prevent the model from memorizing exactly how the target segmenta-
tion should look like.

Ö. Çiçek et al. 2016 [11] present an extension of the U-Net model to 3 spatial
dimensions to be used for segmentation of volumetric data, specifically through
the use of 3D convolutions, up-sampling, and max-pooling. Additionally, the
authors include a Batch-Normalization layer [12] before each convolutional layer
to speed up training by reducing the internal covariance shift.

2.4 Deep Interactive Object Selection
Interactive object selection involves segmenting foreground object in an image
using hints provided by the user. Gray-level segmentations techniques often
struggle with such segmentation tasks and require multiple hints from the user
to produce acceptable segmentations , especially when the objects have varying
lightning, color, and texture. N. Xu et al. 2016 [27] present a method of combin-
ing the classical interactive segmentation method graph-cut optimization with a
semantic segmentation model such as FCN to produce accurate object segmenta-
tion with minimal user-provided hints. The model were tested on the PASCAL
VOC2012 segmentation dataset [8], which consists of 2D images with the goal of
segmenting semantic classes such as aeroplane or bottle from the background.

To provide user hints to the FCN segmentation model, two additional image chan-
nels are appended to the input image. These channels consist of distance maps
which indicate each pixel’s euclidean distance to the closest point hint provided
by the user. The first channel indicates the distance map to foreground points
and the second channel indicates the distance map to background points. An
overview of the model can be seen in Figure 2.8 in which an image slice is com-
bined with the user-provided hints and segmented by first using an FCN model
with the result refined though a graph-cut method.

N. Xu et al. point out that letting real users provide all hints for the training
data is unrealistic, given the large number of samples used. As an alternative, a
procedural hit placement method is described, which combines three placement
strategies. All three variants give an acceptable model of user behaviour. The
strategies are as follows:

1. Place background points in a band around the target object.

2. Place background points randomly on different objects in the image.

3. Place background points in a band around the target object but always max-
imize the distance for a new point to the ones already placed.

Combined, they result in a point placement strategy which is adequately close to
how the typical user places points. Points indicating foreground pixels does not
need any special strategy and can be placed randomly within the object bound.
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Figure 2.8: Processing pipeline for Deep Interactive Object Selection. An
image slice is segmented using an FCN model with the result refined in a
graph-cut algorithm. User-provided hints are added to the model in the form
of distance maps concatenated as channels on the input image.

The predicted object segmentation from the FCN is incorporated into the graph-
cut algorithm by replacing the typical region properties term (see Section 2.1)
Rp(Ap) with the log probability probability map q produced by the FCN:

Rp(Ap) =

− log(qp) if Ap = ”obj”
− log(1 − qp) otherwise

(2.15)

where q denotes the feature-map produced by the segmentation model.



3
Method

This chapter provides an explanation of the model, dataset, and processing done
to train and evaluate the model.

3.1 Dataset
As basis for the model training and evaluation, the lumbar spine CT dataset from
xVertSeg [1] was used. The dataset provided 15 CT-volumes with the lumbar
vertebraes annotated, and 10 CT-volumes without annotations. Each of the anno-
tated CT-volumes contained the 5 lumbar vertebrae (L1 to L5), but consisted of
varying resolution and scope. In Table 3.1, the different CT-volumes and their cor-
responding meta-information are given. Only the scans which had corresponding
ground truth annotations were included.

The dataset was partitioned into two parts, one set consisting of 12 scans which
were used for model training/fitting and the 3 remaining used for validation/performance
evaluation. The partitioning of the dataset is shown in the last two columns of
Table 3.1.

17
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Sample X Y Z ∆x ∆y ∆z Training Validation

image001 1024 1204 200 0.41362 0.41362 1.4506 x
image002 1024 1024 250 0.43207 0.43207 1.2895 x
image003 1024 1024 340 0.54070 0.54070 1.1924 x
image004 1024 1024 170 0.42254 0.42254 1.2837 x
image005 1024 1024 181 0.49629 0.49629 1.8919 x
image006 1024 1024 100 0.28860 0.28860 1.6686 x
image007 1024 1024 180 0.47433 0.47433 1.7593 x
image008 512 512 218 0.80273 0.80273 1.1215 x
image009 1024 1024 230 0.39381 0.39381 1.1052 x
image010 1024 1024 200 0.36014 0.36014 1.1755 x
image011 512 512 351 0.62261 0.62261 1.3286 x
image012 1024 1024 130 0.30626 0.30626 1.7025 x
image013 1024 1024 110 0.32930 0.32930 1.8129 x
image014 1024 1024 223 0.54411 0.54411 1.3069 x
image015 1024 1024 190 0.39449 0.39449 1.1164 x

Table 3.1: Meta-information regarding the dataset. Sample indicates file-
name, X, Y , Z indicate the size of the volume, and ∆x,∆y,∆z indicate the
distance between neighbouring voxels in mm.

3.2 CNN-Model
The architecture was based on the 3D U-net model presented by R. Janssens
et al. [13], whose U-net model slightly differs from the original structure (Fig-
ure 2.7), by employing batch-normalization (BN) between each convolution and
activation layer. The U-net model were chosen instead of FCN as it does not
suffer from the same up-sampling problem as FCN. It as also shown promising
results on many medical datasets. The model used in this thesis additionally have
the final softmax output layer replaced by a sigmoid (eq. 2.12) with one node.
This was done since the model only performed binary segmentation, since the
inclusion of user-provided hints, provide a way for the model to segment the cor-
rect object. This is in contrast to [13], which perform multi-label segmentation
for all vertebrae, without the ability to specify which vertebrae to segment. The
architectural design of the model can be seen in Figure 3.1.

The method proposed by R. Janssens et al. [13] involves three steps. First the
immediate region around the lumbar vertebrae is located using a CNN. The CNN
outputs the minimum and maximum corners for an axis-aligned bounding-box,
which is referred to as the Region Of Interest (ROI). Secondly, a U-net model
is trained to segment the ROI with all vertebrae assigned the same label, this is
referred to as the pre-training stage. Finally, the model is trained to segment each
individual vertebrae i.e. each vertebrae is assigned an individual label. There
are some differences between our method and R. Janssens et al. Primarily, the
interactive segmentation part differs significantly from their method, in large
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part due to the inclusion of distance-maps. These differences are explained as
the segmentation procedure is described in the following sections.

Figure 3.1: Architectural reference for the segmentation model used. C in-
dicate channel-wise concatenation of the feature-maps.

The full model with corresponding hyperparameters can be found in appendix A.

As with O. Ronneberger et al. 2015 [23], a weighted version of the cross-entropy
function was used to calculate prediction loss. This was done since the output
was predicted through a single sigmoid. Weighting of the function was done
since there was a significant class imbalance between the foreground and the
background voxels, applying sample weighting to the loss function reduces the
likelihood that the segmentation model converges to outputting a single class for
all voxels. Equation (3.1) shows how the typical cross-entropy loss function was
modified to accommodate for sample weighting. The weighted cross-entropy loss
function was implemented based on the weighted cross-entropy with logits from
TensorFlow 1, adjusted for integration with Keras. The implemented function
was defined as

− 1∑
w

N∑
n=1

ynwn log ŷn + (1 − yn) log(1 − ŷn), (3.1)

where yn is the nth element in the ground truth matrix, ŷn is the predicted class
assignment, and

w =
N (2y + 1)∑N
n=1 2yn + 1

, (3.2)

where N is the number of elements in y, i.e. the number of voxels in the vol-
ume. This function provides the relative weight between the foreground and

1https://www.tensorflow.org/api_docs/python/tf/nn/weighted_cross_
entropy_with_logits

https://www.tensorflow.org/api_docs/python/tf/nn/weighted_cross_entropy_with_logits
https://www.tensorflow.org/api_docs/python/tf/nn/weighted_cross_entropy_with_logits
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background class calculated on a sample basis.

The built in Adam [16] optimizer was used to tune the model with a default
learning rate of 10−4.

3.2.1 Software
The model was implemented using Keras v2.2.2 with Tensorflow v1.11.0 as back-
end. House-keeping code and evaluation was done using Python 3.6.6, Skimage
0.14.0, Scipy 1.1.0, and Numpy v1.15.2.

3.3 Overview of the Segmentation Procedure
The segmentation procedure contains two parts, the pre-training, and the inter-
active segmentation. Both follow in large part the same procedure, with interac-
tive segmentation requiring extra steps in the pre-processing and post-processing
sections. These differences can be seen in Figure 3.2.

The segmentation for a single CT-volume is divided into three distinct steps.
First, a volume is loaded and pre-processed for the segmentation model, the
output from this step was a set of subvolumes. This step is referred to as the
pre-processing stage. The second stage, took the list of subvolumes, ran them
through the U-net, and recombined them into one volume afterwards. This step
is refereed to as the segmentation stage. The third and final stage, called the post-
processing stage, applied different morphological operations, to improve the seg-
mentation. The flow-chart in Figure 3.2 shows the process. Each part of the figure
is described in greater detail in the following sections.
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Figure 3.2: Overview of the complete segmentation procedure for both pre-
training and interactive segmentation.



22 3 Method

3.4 Pre-processing
This section explains the steps taken in order to transform a CT-volume into a
format which can be fed to the U-net segmentation model.

3.4.1 ROI Extraction
Extraction of a ROI around the target anatomy is done to provide a higher ratio of
relevant voxels to segment. If the model were to segment the entire CT-volume, it
would both take more time and result in training the model on a severely class im-
balanced dataset. Figure 3.3 shows the placement of a ROI indicating the lumbar
spine.

Figure 3.3: Example of a ROI highlighted in red, notice that it covers the
L1-L5 vertebrae but cuts-off the lowest thoracic vertebrae T12.

For the purpose of this project, the localization of the ROI can be seen as a solved
problem, see for example A. Sekuboyina et al. 2017 [24], where the localization
of vertebrae in the dataset was close to perfect with existing methods. As a result,
the ROI was extracted by finding the axis-aligned bounding box which included
all voxels annotated as foreground.

3.4.2 Data Augmentation
Once the CT-volume was cropped to the ROI, data augmentation was performed
in order to produce a larger sample set and in doing so, acting as a regularization
method, to prevent overfitting. To speedup the training process, data augmenta-
tion was applied after the volume was cropped to the ROI. For the purpose of this
thesis the following three augmentation methods were used: elastic deformation,
axial rotation, and ROI translation.

Elastic Deformation: Elastic deformation was used in the initial U-net paper [23]
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and seemed to contribute to the regularization of the model. In contrast to other
implementations, our displacement volumes were created through the use of Per-
lin noise. Perlin noise was first presented by K. Perlin 1985 [22] as a fast way to
generate continuous noise. This method of generating noise was used as it dras-
tically speed up the elastic deformation process. To produce the displacement
volume, the Python wrapper pyfastnoisesimd over the fastnoisesimd 2 package
was used to generate three noise volumes, one for each of the dimensions. These
volumes were combined as a vector field and applied to the CT-volume, produc-
ing a smooth deformation of the original voxel data. Figure 3.4 shows how such
a displacement field may look like in 2 dimensions.

0 20 40 60 80 100

0

20

40

60

80

100
Example of a deformation field

Figure 3.4: Example of a elastic deformation field in two dimensions. Each
arrow indicate a direction which the corresponding voxel should be dis-
placed by.

Voxel displacement was performed with assistance of trilinear interpolation. Each
voxel position in the displaced volume D is computed by

x̂ = x + ~dx, (3.3a)

ŷ = y + ~dy , (3.3b)

where each resulting point (x̂, ŷ) gets the intensity value of the interpolated value
in the original image I . Interpolation is necessary since voxels may be displaced

2https://github.com/Auburns/FastNoiseSIMD

https://github.com/Auburns/FastNoiseSIMD
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into sub-voxel locations. For the sake of simplicity bilinear interpolation is de-
tailed below.

First interpolation is performed along the x-axis,

I(x, y1) =
x2 − x
x2 − x1

I(x1, y1) +
x − x1

x2 − x1
I(x2, y1), (3.4a)

I(x, y2) =
x2 − x
x2 − x1

I(x1, y2) +
x − x1

x2 − x1
I(x2, y2), (3.4b)

where I(xi , yj ) denotes the intensity value at coordinate (xi , yj ). Then interpola-
tion is performed along the y-axis by

I(x, y) =
y2 − y
y2 − y1

I(x, y1) +
y − y1

y2 − y1
I(x, y2). (3.5)

Figure 3.5 provides a visual aid over the relation between the point (x, y) and
its neighbours. As mentioned before, the interpolated intensity I(x, y) will be
assigned to the position (x̂, ŷ) in the displacement volume.

Figure 3.5: Bilinear interpolation of the point x, y. Green point indicate
I(x, y) with the red points indicating the rectangular neighbourhood around
(x, y).

Axial Rotation: Given the structure of the human anatomy we could assume that
the body was scanned in slices of the axial plane. Therefore the data was aug-
mented by randomly rotating the volumes within the axial plane. The rotation
matrix used for performing the rotation is

Raxial =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , (3.6)

where θ denotes the angle we want our slices rotated by. If empty voxels were
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rotated into the volume their values were set to 0. The rotation is done byx̂ŷ
ẑ

 = Raxial ·

xy
z

 . (3.7)

ROI Translation: The ROI was extended in the x and y directions with 15 voxels
and in the z direction the method presented by A. Sekuboyina et al. 2017 [24]
was used. With the difference that the ROI had a random number in the interval
[−25, 25] instead of a value from the discrete set {5, 10, 15, 20, 25} as offset. This
was done to compensate for eventual slight imperfections in the ROI localization
step, as well as not producing a tight clamp around the anatomy.

3.5 Segmentation
The segmentation was done by the semantic segmentation model described in
Section 3.2. Since the ROI was too large to be segmented in one pass, the ROI
was subdivided into overlapping volumes before the segmentation, and merged
into one volume afterwards.

3.5.1 ROI Subdivision
The augmented ROI was subdivided into overlapping volumes before segmenta-
tion. This was done because of hardware restrictions as the GPU used for this
thesis could not store the entire model in its VRAM unless the volume was pro-
vided in chunks. For this purpose, subdivisions of size 160 × 128 × 96 were se-
lected as it was the same size used in R. Janssens et al. [13]. The overlap was
set to half the shape of the desired size i.e an offset of 80 for x, 64 for y, and
48 for z. These subvolumes were independently segmented by the model and
merged using the mean voxel value over all relevant subvolumes as described in
Section 3.5.2 before the post-processing step. Figure 3.6 provides a visual guide
for how the partitions were extracted from the larger volume.
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Figure 3.6: Subvolume partitioning. Each gray tile indicates a partitions
sij ∈ S with the size of 160 × 128 × 96 . For the sake of demonstration the
visual shows subdivision in 2D, the implementation was done in 3D.

3.5.2 Volume stitching
Since the segmentation predictions were done on subvolumes, the final predic-
tion volume q needed to be estimated by combining the subvolumes. Voxels
which were contained in multiple subvolumes got the average value over all rele-
vant subvolumes. Consequently,
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q(x, y) =
1∣∣∣Sxy ∣∣∣

∑
s∈Sxy

s(x, y), (3.8)

where Sxy denotes the set of subvolumes which contains voxel (x, y), and s(x, y)
denotes the segmentation prediction of voxel (x, y) in the given subvolume s.

3.6 Post-Processing
The raw output from the segmentation model often require some refinement. In
this project three different methods were examined, thresholding, morphing, and
graph-cut, see below.

Threshold: Perform a thresholding method on the prediction volume. If a given
voxel had a predicted score of < 0.5 it was classified as background and if it had a
score of ≤ 0.5 it was classified as foreground. An example is shown in Figure 3.7.

Figure 3.7: Example of thresholding of a small region. The threshold is set
to 0.5.

Morphing: This procedure was based on the method presented in A. Sekuboy-
ina et al. 2017 [24], where the predicted volume was processed using a 3 × 3
binary closing on each sagittal (from anatomical left to right) slice followed by a
removal of small (4-connected) connected components from the 3D volume. For
this thesis a small connected component was chosen as any 4-connected group of
segmented voxels with a voxel count of less than 125000. This value was decided
based on exploratory testing of one of the results from the training set.

Graph-cut: This procedure performed the post-processing step presented by N.
Xu et al. [27] to refine the output using a traditional graph-cut interactive seg-
mentation model. The implementation was described in detail in Section 2.1.
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3.7 Interactive Segmentation
Based on the work of N. Xu et al. [27], described in Section 2.4, this thesis exam-
ined if the segmentation could be improved by replacing the FCN with a 3D U-
net, with additional post-processing methods, combined with segmentation hints
placed by the user. This was done through a graph-cut optimization algorithm
(explained in Section 2.1) with assistance of the prediction volume produced by
the segmentation model.

Performing the graph-cut algorithm as described by Y. Boykov and M-P Jolly
2001 [4] (also defined as eq 2.5) resulted in many integer overflows for the bound-
ary term. Therefore, the boundary term was redefined as

B{p,q} = e
− |Ip−Iq|

2σ2 , (3.9)

with σ set to 13 after a brute-force optimization in the range [0, 100] using the
image001 as test volume. Ip describes the intensity value of voxel p in the volume
I .

3.7.1 Distance Maps
Additionally, the distance maps which indicate background and foreground points
placed by the user were created by placing the points in two volumes with the
same size as the prediction volume and applying the Euclidean distance trans-
form. This produced two dense volumes which could be concatenated to the
initial volume as channels to provide context for the segmentation method. Ex-
ample of distance maps for foreground and background can be seen in Figure 3.8
with the corresponding image slice.

The hints indicating the foreground object were placed uniformly on random vox-
els annotated as object in the dataset. Hints indicating background were placed
using the strategies described in Section 2.4. The first placement strategy places
points around the target object with a maximum distance of 5 voxels from the
edge of the target vertebrae. The second strategy places points randomly on other
lumbar vertebraes in the volume. The third strategy places points around the tar-
get vertebrae as the first strategy, but also tries to maximize the distance between
each point, to provide greater cover around the segment boundary.
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(a) GT mask. (b) Foreground distance
map.

(c) Background distance
map.

Figure 3.8: Example of an annotated image slice with foreground (red) and
background (blue) points placed. 3.8b and 3.8c provides the corresponding
distance maps.

3.8 Performance Metrics
This section describes the evaluation metrics used for quantitative analysis of the
segmentation method. Dice Score and Intersection over Union were selected for
their appearance in multiple segmentation challenges as well as other papers pre-
senting segmentation methods, see e.g. xVertSeg challenge [1]. Precision and
Recall were selected as well to provide insight into the type of segmentation er-
rors the model produces, and to assist in the performance analysis.

Precision, also called the positive predicted value, indicate the amount of cor-
rectly predicted foreground voxels compared to all voxels classified as foreground,
close to 1 would indicate good results and close to 0 bad ones. Precision can be
represented using a binary confusion matrix as

T P
T P + FP

, (3.10)

where T P indicate correctly segmented foreground voxels and FP incorrectly seg-
mented foreground voxels.

Recall, also called the true positive rate, indicate the ratio between correctly pre-
dicted foreground voxels compared to all voxels which should have been classi-
fied as foreground. A score close to 1 would indicate a good result while a score
close to 0 would indicate bad ones. Recall can be described using a confusion
matrix as the equation

T P
T P + FN

, (3.11)

where FN indicate voxels incorrectly segmented as background.

Sørensen–Dice coefficient, also known as F1-Score, or simply Dice score, is de-
fined as the harmonic mean between the precision and recall scores. In some
implementations a weight dictate if the score should skew towards one of the
metrics depending on which is most relevant for the problem. This implemen-
tation only takes the harmonic mean. Mathematically, F1-Score can be written
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as
2T P

2T P + FP + FN
, (3.12)

which is useful when both precision and recall are of interest for the comparison.

Intersection over Union (IoU), also known as the Jaccard index is often used
when comparing the relative overlap between ground truth segmentation and
the predicted one. Often used in object detection and localization to compare
bounding-boxes but has seen significant use within segmentation problems such
as the Cityscapes dataset [6]. A score close to 1 would indicate a good result
while a score close to 0 would indicate a bad result. IoU can be written using a
confusion matrix as

T P
T P + FP + FN

. (3.13)
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Results

This chapter provides the different scores and metrics presented in Chapter 3
based on the training and evaluation data. The chapter is split up into three
primary parts, Pre-Training 4.1, Interactive Segmentation 4.2, and Visual Inpsec-
tion 4.3.

4.1 Pre-Training
Following the method presented in Section 3.3 and Figure 3.2, the model was
pre-trained by segmenting all vertebrae as the same label and without distance
maps.

4.1.1 Training
The model architecture was identical to Figure 3.1 with a learning rate of 10−4,
number of epochs 500 and samples per epoch of 80. The number of samples per
epoch was chosen to allow for all partition of the entire dataset to be evaluated
atleast once each epoch. Since the pre-training segmentation is done with all
vertebrae being assigned the same label, the distance maps on the input is set
to 0. The dataset and its corresponding split into training/validation sets can
be seen in Table 3.1. Three volumes were used for validation/evaluation and 12
volumes were used for training.

Figure 4.1a and 4.1b shows the cross-entropy loss over training epochs. For loss
over training samples (Figure 4.1a), the loss function seem to converge over the
epochs. For the validation loss (figure 4.1b), there is significantly more variance
but some convergence can be seen between the 0th and 100th epoch.
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(a) Training loss of 12 augmented volumes
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(b) Validation loss of 3 augmented volumes

Figure 4.1: Training and Validation loss for binary segmentation. The Blue
line indicate weighted cross-entropy and the orange indicate the default non-
weighted cross-entropy from Tensorflow. Values closer to 0 are better and
there is no upper bound. Note how the training loss is similar to the typ-
ical inverse square function and how validation loss has significantly more
variance. Dataset can be seen in Table 3.1.
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4.1.2 Difference between Post-Processing Methods
Table 4.1 shows mean and standard deviation over the two post-processing meth-
ods used for complete lumbar bone segmentation. Morphing post-processing
produced slightly better results compared to thresholding.

Post- Dice Precision Recall IoU
Processing

Morphed 0.923±0.036 0.945±0.024 0.903±0.062 0.858±0.063
Threshold 0.915±0.026 0.943±0.025 0.890±0.046 0.844±0.044

Table 4.1: Pre-training segmentation results over the validation set seen in
Table 3.1. Mean and standard deviation for the different metrics over post-
processing methods. The 3 CT-volumes in the validation set was used for
evaluation. Note that morphed slightly outperforms threshold by around
1% for each metric.

Figure 4.2 provides a view of the volume image010 when segmented during the
binary pre-training phase, with thresholding post-processing. Figure 4.3 shows
the same segmentation in 3D, with the inclusion of the morphed post-processing
method as well. In addition to the lumbar spine, parts of the ribs, T12, and S1
were segmented as well.

(a) Reference Mask (b) Predicted Segmentation (IoU 0.80)

Figure 4.2: Pre-training segmentation performed on image010 using the
threshold post-processing method. Red color indicate voxels in the segment.
Note how the lowest thoracic vertebrae T12, as well as the highest sacral S1
was segmented to a large part as well.
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(a) Reference Mask 3D (b) Threshold 3D (IoU 0.80) (c) Morphed 3D (IoU 0.81)

Figure 4.3: Pre-training segmentation in 3D performed on image010 using
both thresholding and morphing post-processing. Red color indicate vox-
els in the segment. Note how parts of the rib was segmented as well when
threshold was used but removed in the morphed segmentation.

Figure 4.4 shows a scatter plot over IoU and Dice score for the pre-training eval-
uation. Post-processing with morphing produces a slightly better segmentation
on image003.
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Figure 4.4: IoU and Dice score over post-processing methods for the pre-
training evaluation. Note how morphing has a slightly better best-case.
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4.2 Interactive Segmentation
This section presents the results of providing segmentation guides by the user.
The model trained during the pre-training phase is used for interactive segmen-
tation with the same volumes for training and validation. As with pre-training,
a learning rate of 10−4 was used. Number of epochs was set to 350 and samples
per epoch set to 240, again to allow for all partitions of the entire dataset to be
evaluated at least once each epoch..

The training follows the one presented to the right in Figure 3.2. It was done by
selecting a single vertebrae for each sample. A random amount of points were
placed in accordance with the strategies presented by N. Xu et al. 2016 [27],
described in Section 2.4.

4.2.1 Training
Below in Figure 4.5a and 4.5b the respective training and validation loss can be
observed. The same loss functions as with the pre-training was used. In Fig-
ure 4.5a, the initial loss is significantly lower compared the the pre-training, pos-
sibly caused by the weights in the pre-training only requiring fine-tuning, as most
image-features would be similar. No discernible convergence can be observed in
the validation loss (Figure 4.5b).
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Figure 4.5: Training and validation loss for interactive segmentation. The
blue line indicate sample-weighted cross-entropy and the orange indicate
standard non-weighted cross-entropy from Tensorflow. Values closer to 0
are better and there is no upper bound. Note that training loss converges
faster than for the pre-training while validation loss does not converge to
any significant degree.
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4.2.2 Effects from Point Placement
Tables 4.2, 4.3, and 4.4 shows the different metrics over number of user-provided
hints, with mean and standard deviation. Figure 4.6 shows heatmaps over IoU
and Dice scores based on number of user-placed points and placement strategy.
The placement strategies can be found under Section 2.4.

Looking at the heat-maps in Figure 4.6, the number of foreground points seems to
affect the result much more than background points, with a convergence slightly
above 8 foreground points. The difference between background point placement
strategies is negligible.

Dice Precision Recall IoU
Points

1 0.285 ± 0.262 0.199 ± 0.204 0.924 ± 0.180 0.197 ± 0.201
2 0.562 ± 0.320 0.466 ± 0.298 0.950 ± 0.067 0.454 ± 0.290
4 0.810 ± 0.213 0.751 ± 0.230 0.946 ± 0.044 0.719 ± 0.221
8 0.930 ± 0.053 0.921 ± 0.080 0.945 ± 0.020 0.874 ± 0.076
16 0.952 ± 0.015 0.964 ± 0.021 0.940 ± 0.021 0.908 ± 0.026
32 0.954 ± 0.013 0.969 ± 0.014 0.939 ± 0.022 0.912 ± 0.023
64 0.953 ± 0.013 0.968 ± 0.014 0.939 ± 0.022 0.911 ± 0.023
128 0.952 ± 0.012 0.965 ± 0.015 0.939 ± 0.021 0.909 ± 0.022

Table 4.2: Mean and standard deviation over validation samples for the dif-
ferent metrics over a number of foreground points. Background points vary
between 1 and 128. Note how the number of foreground points significantly
affect on the scores.

Dice Precision Recall IoU
Points

1 0.761 ± 0.318 0.728 ± 0.342 0.952 ± 0.048 0.696 ± 0.323
2 0.774 ± 0.307 0.744 ± 0.334 0.943 ± 0.083 0.709 ± 0.315
4 0.795 ± 0.292 0.771 ± 0.317 0.940 ± 0.067 0.731 ± 0.298
8 0.806 ± 0.280 0.782 ± 0.309 0.941 ± 0.059 0.741 ± 0.290
16 0.811 ± 0.277 0.789 ± 0.305 0.940 ± 0.054 0.747 ± 0.285
32 0.803 ± 0.281 0.781 ± 0.311 0.938 ± 0.058 0.739 ± 0.291
64 0.823 ± 0.261 0.802 ± 0.292 0.938 ± 0.055 0.758 ± 0.272
128 0.826 ± 0.257 0.806 ± 0.288 0.933 ± 0.077 0.761 ± 0.268

Table 4.3: Mean and standard deviation over validation samples for the dif-
ferent metrics over a number of background points. Background points vary
between 1 and 128. Note how the number of background points seem to
have a very small effect on the scores.
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Dice Precision Recall IoU
Strategy

1 0.798 ± 0.290 0.776 ± 0.317 0.936 ± 0.086 0.735 ± 0.298
2 0.796 ± 0.287 0.769 ± 0.316 0.945 ± 0.051 0.731 ± 0.296
3 0.805 ± 0.279 0.781 ± 0.308 0.941 ± 0.046 0.740 ± 0.288
Table 4.4: Mean and standard deviation over validation samples for the dif-
ferent metrics over a number of background placement strategy. Note how
only minor differences can be observed between the strategies.
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Figure 4.6: Heat-maps showing mean Dice and IoU score over Point place-
ment. Darker colour indicate higher mean value. Note how the number of
background points does not seem to significantly affect the result compared
to number of foreground points, which converges around 8 placed points.
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4.2.3 Vertebrae Segmentation
Table 4.5 and Figure 4.7 presents the difference in segmentation between verte-
brae label. Table 4.5 indicate that the L3 vertebrae were the easiest to segment,
while L5 was the hardest.

Dice Precision Recall IoU
Vertebrae

L1 0.792 ± 0.292 0.777 ± 0.320 0.925 ± 0.077 0.726 ± 0.296
L2 0.829 ± 0.264 0.801 ± 0.290 0.953 ± 0.062 0.769 ± 0.275
L3 0.838 ± 0.252 0.815 ± 0.283 0.949 ± 0.050 0.778 ± 0.266
L4 0.791 ± 0.291 0.764 ± 0.320 0.941 ± 0.065 0.726 ± 0.301
L5 0.749 ± 0.315 0.719 ± 0.343 0.934 ± 0.058 0.678 ± 0.319

Table 4.5: Mean and standard deviation over validation samples for the dif-
ferent metrics over lumbar vertebrae, Close to 1 is good and close to 0 is bad.
Note how segmentation of L3 produces the highest Dice and IoU scores while
L5 have significantly lower IoU. The number of foreground/background
points were varied between 1 and 128.

�� �� �� �� ��
���������

�
�

�



��
��

��
��



�

��
��

��
��

��
��

��
�

���� ���� ���� ���� ����

���
 ���� ��	� ���
 ����

��
� ��
� ��� ��	
 ��	

���� ���� ���� ���� ���

���� ���� ���� ���� ����

���� ���� ���� ���� ����

���� ���� ���� ���� ����

���� ���� ���� ���� ����

����

�� �� �� �� ��
���������

���� ���� ���� ���� ����

���
 ���� ��� ���� ����

��	� ��	� ��
� ���	 ����

��
� ���� ���� ��
� ��
�

��� ���� ���� ���� ��
�

��� ���� ���� ���� ���

��
� ���� ���� ���� ��
�

��
� ���� ���� ���� ��
�

���

���

���

���

���

��


���

���

���

���

���

��


���

Figure 4.7: Heatmaps showing Dice and IoU score Vertebrae partitioned over
number of foreground points. Darker colour indicate higher mean value.
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4.2.4 Difference between Post-processing Methods
Table 4.6 and Figure 4.8 show how the different post-processing methods affected
the evaluation result. Thresholding and graph-cut performed better, with mor-
phing performing poorly on low amount of foreground points. If more than 8
foreground points were provided, all methods had similar performance.

Dice Precision Recall IoU
Processing

Graphcut 0.831 ± 0.219 0.797 ± 0.270. 0.941 ± 0.074 0.757 ± 0.251
Morphed 0.738 ± 0.379 0.732 ± 0.383 0.944 ± 0.020 0.693 ± 0.362
Threshold 0.830 ± 0.218 0.798 ± 0.270 0.938 ± 0.074 0.756 ± 0.251
Table 4.6: Mean and standard deviation over validation samples for the
different metrics over post-processing methods. Note how Graphcut have
scores close to Threshold but Morphed have significantly lower score.
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Figure 4.8: Heat-maps showing Dice and IoU score over post-processing
methods. Darker colour indicate higher mean value. Note how Morphed
performs significantly worse on low number of foreground points compared
to other methods but slightly better at higher number of foreground points.
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4.2.5 Difference between Samples
Table 4.7 and Figure 4.9 shows the evaluation difference between the three vali-
dation samples.

Dice Precision Recall IoU
Sample

image003 0.831 ± 0.276 0.809 ± 0.297 0.955 ± 0.054 0.777 ± 0.283
image007 0.774 ± 0.300 0.756 ± 0.334 0.924 ± 0.072 0.706 ± 0.307
image010 0.794 ± 0.277 0.761 ± 0.306 0.943 ± 0.061 0.723 ± 0.286

Table 4.7: Mean and standard deviation for the different metrics over vali-
dation samples.
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Figure 4.9: Heat-maps showing Dice and IoU score over validation samples.
Darker colour indicate higher mean value. Note how the samples have dif-
ferent scores when few foreground points are placed but similar when many
points are provided.
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4.3 Visual Inspection
This section presents visual references to determine the quality and usability of
the segmentation method.

Figure 4.10, 4.11, 4.12, 4.13 and 4.14 shows examples of each lumbar vertebrae in
the image003 CT-volume. The slices are presented with corresponding reference
masks.

(a) Reference Mask (b) Segmentation (Dice 0.96)

Figure 4.10: Segmentation and reference for the L1 vertebrae in image003
with 16 provided hints.
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(a) Reference Mask (b) Segmentation (Dice 0.95)

Figure 4.11: Segmentation and reference mask for the L2 vertebrae in im-
age003 with 16 provided hints.

(a) Reference Mask (b) Segmentation (Dice 0.95)

Figure 4.12: Segmentation and reference mask for the L3 vertebrae in im-
age003 with 16 provided hints.
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(a) Reference Mask (b) Segmentation (Dice 0.96)

Figure 4.13: Segmentation and reference mask for the L4 vertebrae in im-
age003 with 16 provided hints.

(a) Reference Mask (b) Segmentation (Dice 0.94)

Figure 4.14: Segmentation and reference mask for the L5 vertebrae in im-
age003 with 16 provided hints.



46 4 Results

Figure 4.15, 4.16, 4.17, 4.18 and 4.19 shows examples of each lumbar vertebrae in
the image007 CT-volume. The slices are presented with corresponding reference
masks.

(a) Reference Mask (b) Segmentation (Dice 0.92)

Figure 4.15: Segmentation and reference mask for the L1 vertebrae in im-
age007 with 16 provided hints.

(a) Reference Mask (b) Segmentation (Dice 0.96)

Figure 4.16: Segmentation and reference mask for the L2 vertebrae in im-
age007 with 16 provided hints.
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(a) Reference Mask (b) Segmentation (Dice 0.95)

Figure 4.17: Segmentation and reference mask for the L3 vertebrae in im-
age007 with 16 provided hints.

(a) Reference Mask (b) Segmentation (Dice 0.93)

Figure 4.18: Segmentation and reference mask for the L4 vertebrae in im-
age007 with 16 provided hints.
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(a) Reference Mask (b) Segmentation (Dice 0.91)

Figure 4.19: Segmentation and reference mask for the L5 vertebrae in im-
age007 with 16 provided hints.
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Figure 4.20, 4.21, 4.22, 4.23 and 4.24 shows examples of each lumbar vertebrae in
the image010 CT-volume. The slices are presented with corresponding reference
masks.

(a) Reference mask (b) Segmentation (Dice 0.94)

Figure 4.20: Segmentation and reference mask for the L1 vertebrae in im-
age010 with 16 provided hints.

(a) Reference mask (b) Segmentation (Dice 0.95)

Figure 4.21: Segmentation and reference mask for the L2 vertebrae in im-
age010 with 16 provided hints.
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(a) Reference mask (b) Segmentation (Dice 0.93)

Figure 4.22: Segmentation and reference mask for the L3 vertebrae in im-
age010 with 16 provided hints.

(a) Reference mask (b) Segmentation (Dice 0.91)

Figure 4.23: Segmentation and reference mask for the L4 vertebrae in im-
age010 with 16 provided hints.
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(a) Reference Mask (b) Segmentation (Dice 0.90)

Figure 4.24: Segmentation and reference mask for the L5 vertebrae in im-
age010 with 16 provided hints.
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Figure 4.25, 4.26, 4.27 and 4.28 presents the raw prediction produced by the
segmentation model and the final segmentation with foreground points indicated
as blue dots. Each case represents the same slice of a CT-volume but the points
are randomized for each case. Hints far away from the given slice are removed as
to not cause confusion. The images shows how the model perform better as more
hints are provided. Additionally, the partitions are clearly visible even after the
combination, with partitions close to hints containing higher confidence. The
brighter the colour, the more certain is the model is of its prediction.

(a) Raw prediction (b) Segmentation (Dice 0.51)

Figure 4.25: Segmentation and reference mask for the L1 vertebrae in im-
age007 with 2 hint provided. Note how different partitions are clearly dis-
tinguishable, as well as the spatial relationship between the point and the
model confidence.
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(a) Raw prediction (b) Segmentation (Dice 0.70)

Figure 4.26: Segmentation and reference mask for the L1 vertebrae in im-
age007 with 2 hints provided. Note how different partitions are clearly dis-
tinguishable, as well as the spatial relationship between the point and the
model confidence.

(a) Raw prediction (b) Segmentation (Dice 0.77)

Figure 4.27: Segmentation and reference mask for the L1 vertebrae in im-
age007 with 4 hints provided. Note how different partitions are clearly dis-
tinguishable, as well as the spatial relationship between the point and the
model confidence.
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(a) Raw prediction (b) Segmentation (Dice 0.95).

Figure 4.28: Segmentation and reference mask for the L1 vertebrae in im-
age007 with 8 hints provided. Note how different partitions are clearly dis-
tinguishable, as well as the spatial relationship between the point and the
model confidence.
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Figures 4.29 shows a sagittal profile slice of a segmented L2 in the image007
CT-volume. Figure 4.30 contains the full 3D segmentation of the same vertebrae.

(a) Reference mask (b) Predicted segmentation

Figure 4.29: Example segmentation of a L2 vertebrae in the sagittal plane of
the image007 CT-volume.

(a) Ground Truth (b) Segmentation

Figure 4.30: Example 3D segmentation of a vertebrae. The figure represents
the same vertebrae and sample as Figure 4.29. Note how the shape is very
similar to the reference mask.





5
Discussion

This section presents discussion and analysis regarding the method proposed and
the results produced in Chapter 4. The results are additionally compared in rela-
tion to the reference literature as well as some similar studies. Finally, the method
and thesis work will be examined in terms of difficulty and quality.

5.1 Result Discussion
This section examines the different results procured and possible explanations of
what the results may entail. The section is split into roughly the same structure
as in Chapter 4.

5.1.1 Model Training
Model training involved two steps, first the model was pre-trained without any
hints provided by the user and all lumbar vertebraes assigned to the same seg-
ment.

The training loss (Figure 4.1a) follows the shape one would expect with the loss
decreasing similar to an inverse-exponential until it converges. This is a good
sanity-check indicating that the model manages to find some signatures in the
data which can be learned. The validation loss (Figure 4.1b) on the other hand
is not as straight-forward, some convergent trend can be observed but with a
large amount of spikes and noise. This is not necessarily what would be expected
but could be explained in multitude of ways. The first and most straightforward
explanation is that there is a small number of validation samples which results in
uncommon features such as damaged vertebraes contributing to higher variance.
Additionally, looking at the result it can be observed that large part of non lumbar
vertebraes, specifically T12 is segmented as well.
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Figure 5.1: Copy of the training and validation loss plots for pre-training
(Figure 4.1).

Looking at the loss for interactive segmentation (Figure 4.5a and 4.5b) we note
a faster convergence in the training loss but no clear trend in the validation loss,
here the spikes in the validation set are significantly more pronounced. Examin-
ing how the number of points affected the result, a possible explanation is that
spikes are caused by samples where few points were provided, resulting in a
significantly lower score, which would translate to higher loss. The number of
epochs for both pre- and interactive model fitting were initially set to 500 each,
but time constraints and the non-convergence of the validation set resulted in the
interactive training-phase being terminated early.
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Figure 5.2: Copy of the training and validation loss plots for interactive seg-
mentation (Figure 4.5).

5.1.2 Post-processing
For the pre-training both post-processing methods performed about as well (Ta-
ble 4.1, Figure 4.4) with the Morphed method having a slightly higher best-case.
This could be explained by looking at the visual result (Figure 4.3) where a num-
ber of small connected components can be observed, these are removed by the
morphed post-processing method.
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(a) Reference Mask 3D (b) Threshold 3D (c) Morphed 3D

Figure 5.3: Copy of pre-training segmentation (Figure 4.3).

For the interactive segmentation the post-processing methods performed slightly
different (Table 4.6 and Figure 4.8). Graphcut and Threshold performed very
close to each other but Morphed had a lower score. This is an interesting result
since the pre-training would indicate that the Morphed would perform better
than Threshold. Looking at the performance over foreground points (Figure 4.8)
this discrepancy can be explained by the amount of foreground points. Low
amount of points resulted in the connected component removal process in Mor-
phed removing the entire foreground object, when multiple points are present,
similar improvements over the other post-processing methods can be observed
as in the case of the pre-training. Figure 5.4 shows the final segmentation of a
single lumbar vertebrae.

(a) Ground Truth (b) Segmentation

Figure 5.4: Example 3D segmentation of a vertebrae. Note some slight bleed-
out at the front (Figure 4.30).

It would be expected that the Graphcut method would outperform the others as it
is the most computationally complex of the methods. A possible explanation for
this discrepancy could be found by observing the Precision column of Table 4.6,
where Graphcut and Threshold have significantly higher Precision compared to
Morphed. This means that about 8% more cases of false positives, with a high



60 5 Discussion

degree of certainty (qij > 0.5). Graphcut and Threshold were also very close to
each other.

Visual inspection such as Figures 4.13, 4.15, 4.19, 4.23 and 4.14 would indicate
that incorrect predictions often occur either right on the border of the correct
object, or as isolated clusters. This would result in the boundary term B(A) ignor-
ing these regions during the Graphcut post-processing step, as R(A) would be the
same in the surrounding neighbourhood. As a result, the discontinuity function
(eq. 2.3) causes these regions to only account for R(A), which caused the incorrect
predictions in the first place. A possible solution could be to modify the region
term R(A) as an ensemble method, such as combining the CNN with histogram
matching or similar method to improve the reliability of the term.

5.1.3 Point-Placement
The number of background points (Table 4.3 and Figure 4.6) does not seem to sig-
nificantly affect the quality of the result, as a consequence, the placement strate-
gies for background points does not affect the result. The number of foreground
points (Table 4.2 and Figure 4.6) does on the other hand affect the quality of the
result, with the quality converging from 8 points.

Possible explanations for the fact that only foreground points significantly affect
the result could include properties such as obvious background voxels being easy
to segment as they often consists of different tissues while there are many parts of
a given volume which have the same signature as the foreground, meaning that
the model has to adhere to the foreground points for context.

Looking at the effect of number of points placed in relation to the paper N. Xu et
al. 2016 [27] they needed around 6 − 8 points in order to reach the target IoU for
a number of datasets, although not volumetric medical images and a FCN instead
of a U-Net. This is the same order of magnitude of points our method required
to reach comparable scores.

Figure 5.5 provides a visual example of how the number of placed foreground
points affect the segmentation.

(a) 1 Point (b) 2 Points (c) 4 Points (d) 32 Points

Figure 5.5: Visual example of segmentation results based on number of
foreground points. Blue points indicate foreground placements. Note how
placed points are always included in the resulting segmentation and how the
volume stitching is visible, especially in 5.5a.
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As can be observed in Figures 4.25, 4.26, 4.27, and 4.28, also indicate how both
the point placement and volume partitioning have a significant effect on the seg-
mentation quality.

Figures 4.14, 4.15, 4.19 and 4.23 shows how damaged/strangely shaped verte-
braes causes poorer segmentation. The above referenced figures can be seen col-
lected in Figure 5.6.

(a) Image003 L5 (b) Image007 L1 (c) Image007 L5 (d) Image010 L4

Figure 5.6: Copies of Figures 4.14, 4.15, 4.19 and 4.23.

5.1.4 Validation Samples
There were significant difference between the score of the respective validation
samples, visual inspection shows that some of the vertebraes in the validation set
suffered from significant deformities. Papers such as R. Janssens et al. [13] per-
formed 3-fold cross validation in order to get more robust results which means
that any comparison require some consideration. Due to time constraints, the
cross validation was omitted from the project.

5.1.5 Vertebrae Segmentation
In comparison to R. Janssens et al. [13] the average score for the different ver-
tebrae (Table 4.5 and Figure 4.7) differs slightly. Both ours and their results
found that the L5 vertebrae produce lower scores than the others, but their re-
sults would indicate that the remaining vertebrae had similar performance. In
our case it seemed that L2 and L3 were slightly easier to segment compared to
the rest, perhaps explained by the samples picked for validation or that they
were less affected by any ROI augmentation. Additionally they perform multi-
class segmentation where the model can internalize pairs of vertebrae as anchor
points for their segmentation.

5.2 Method Discussion
The method used during the project was designed based on a number of papers,
some of which did not entirely explain their methods in a reproducible manner.
As a result, some qualified assumptions had to be made in order to produce a
concrete method. There were three primary parts of the method which lacked
significant support and therefore were either motivated by alternative sources,
or by factually grounded assumptions.
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Comparing the result with other papers, the model reaches a score similar to
some of the best methods presented (R. Janssens et al. [13]), which produced a
Dice score of 0.95 compared to our 0.94 and an Intersection over Union of 0.92
compared to our 0.91. The aim of introducing user-provided hints into the model
was to provide a more general end-to-end segmentation, which could be extended
into additional anatomical areas, such as knee-joints. The result shows that this
may be a possibility as we reach comparable performance with a more general
method.

The first significant change in the method was the data augmentation (Section 3.4.2)
as R. Janssens et al. [13] performed some additional regularization techniques,
such as gray-level augmentation which was not described in the paper. The origi-
nal method additionally applied random scaling of the volumes. Volume scaling
was omitted during this project since the elastic deformation technique modifies
the volume in a similar way. Additionally, there were resolution differences al-
ready present in the dataset, one of the extreme examples being image008, which
only had half of the slice-resolution compared to the other volumes. A more con-
sistent approach may be to work with the volumes in metric, as opposed to the
discrete image size.

The second change is the Morphed post-processing method. R. Janssens et al. [13]
did not specify what modifications were involved, resulting in the one used dur-
ing this thesis being taken from a different paper (A. Sekuboyina et al. 2017 [24])
which provided a base for the original method.

Initially, the segmentation model developed during this thesis downscaled the
volume instead of extracting overlapping sub-volumes. This approach was moti-
vated as a way to produce a larger receptive field, but significantly reduced the
segmentation quality. This approach was abandoned both for the reduced resolu-
tion of the output and the inconsistency of comparing down-scaled results with
alternative methods.

During the evaluation of the segmentation model the dataset was only split into
two parts and no cross-validation was performed. This makes the results not as
reliable as the reference studies but the concession was made as the time required
for model training would make it hard to fit within the allotted thesis time-frame.

In Chapter 4, direct comparisons were limited to the papers providing the ba-
sis for the method. Methods using traditional segmentation techniques such as
the paper by M. Krčah et al. 2011 [17] reaches impressive results for general
segmentation of bone tissue using a graph-cut based method. The Probabilistic
Watershed Transform presented by W. Shadid and A. Willis 2013 [25] managed
a dice score of 0.94 ± 0.04 which is similar to ours given enough user-provided
points. Worth pointing out is that their method worked on slices and therefore
did not have the context of the entire volumetric data at hand.
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5.3 Thesis Reflection
Deep learning methods for segmentation, classification and regression has seen
enormous progress within the field of medical imaging, but the task of segment-
ing bone-tissue is in the clinical world often done through traditional digital
image processing and gray-level segmentation. At the start of this thesis, this
seemed to be caused by a reliability on old pipelines and traditional methods,
which I am certain is still true to some extent. What I discovered during this
thesis was that deep learning based semantic segmentation algorithms are highly
dependent on the data provided for training, but clinical use often consists of seg-
mentation tasks on wildly varying anatomies and different quality scans/intensity
ranges. As a result there is a high expectation for reliability and the desire to be
able to provide worst-case guarantees, when considering segmentation methods.
As no large-scale dataset for the domain of segmenting bones in CT-volumes is
available at the present, these methods may struggle to reach the same reliability
traditional methods provides.

The time required to build and test the model was significantly underestimated
and required at least two complete re-works, as concessions for the original hard-
ware had to be accounted for. Once I got access to a better GPU the implemen-
tation could go back to focusing on reproducing the methods presented in the
reference literature.

5.3.1 Additional Dataset
From the start of the thesis a dataset of 10 CT-volumes, provided by Region
Östergötland, of knee-joints was designated for training/evaluation. Significant
time was put on segmenting this set of CT-scan by hand which in the end turned
out to be too small to produce reliable results, resulting in the model memoriz-
ing the training volumes and performing poorly on any other scans. Figure 5.7
shows the relative quality between the training and validation sets for the private
dataset. Note how the segmentation of the training set is close to perfect while
the validation set is unusable.

(a) Training sample (b) Training sample (c) Validation sample

Figure 5.7: Example segmentations produced for the private dataset.

Because of the inconsistent results, the project moved to using the lumbar ver-
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tebrae dataset which provided the added benefit of being open and providing a
direct comparisons with other studies.



6
Conclusions and Future Work

This section presents the final summary of the project and what can be improved/explored
in the future.

6.1 Conclusions
The aim for this thesis was to look at the performance of an interactive CNN-
based segmentation model, with the added goal of examining how user-provided
hints affect the result. In conclusion, the model achieves results comparable with
the reference studies, perhaps meriting further studies, as N. Xu et al. 2016 [27],
and the follow-up N. Xu et al. 2017 [28] shows that interactive semantic segmen-
tation is a field with much potential. But for the implementation examined in the
thesis, the model lacks the verifiability of classical segmentation methods, result-
ing in the model being too unreliable to be used independently for clinical tasks,
as there is no minimal guaranteed quality.

6.1.1 Research Questions
Below are the research questions which provided the foundation for this thesis
with the answers found during the project:

1. How well does the model perform segmentation of bone-tissue in re-
gards to Intersection over Union?

When adequate number of hints (≥ 8) are provided by the user we achieve
a IoU of 0.91. With a random number of segmentation hints, we achieve a
mean IoU of 0.72.

2. Howwell does themodel perform segmentation of bone-tissue in regards
toDice Score?
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When adequate number of hints (≥ 8) are provided by the user we achieve
a Dice score of 0.95. With a random number of segmentation hints, we
achieve a mean Dice score of 0.79.

3. Does the number of user-provided points affect the segmentation perfor-
mance and in what way?

The number of points does affect the result. The number of foreground
points affect the result where the segmentation quality converges above 8
points. Background points does not significantly affect the result but some
percentage improvement can be seen up to 8 points where the improvement
stagnates. Placement strategy for the background points does not affect the
result at all.

6.2 Future Work
Many avenues were explored during this project but did not make the cut for the
report. Below are some of these topics which may merit further studies:

Is it possible to get better/equivalent performance on other medical imaging seg-
mentation problems? This thesis has exclusively looked at segmentation of bone
tissue in CT-scans, but the procedure developed can be directly applied to any
other segmentation problem within medical imaging. It may interesting to ex-
amine if the model is evaluated on different problems, such as organ, or other
soft-tissue segmentation problem.

Could the model be used in ensemble with other interactive segmentation mod-
els to produce more reliable results? The model produces on average very good
results, but it lacks worst-case guarantees and any incorrect segmentation is hard
to infer from the model. Therefore, it may be interesting to examine if the model
can be used as a weak classifier in ensemble with other models, which are better
understood.

Does different post-processing methods produce more desirable results? During
this thesis, we examined three different post-processing methods, these showed
varying properties and results, perhaps there are other refinement methods which
produces higher quality results.

Can the distance maps be generated through autonomous methods? The man-
ual work involved in this method places it in a direct disadvantage compared
to the related methods, which are completely automatic. Therefore, it would be
interesting to examine way to automatically produce the distance-maps.
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A
Model Architecture

This appendix presents the implementation details for the segmentation model
used during this project. Figure A.1 shows the U-Net segmentation model and
Table A.1 shows the corresponding model parameters. Note that concatenation
layers concatenate the output from the Down group with the corresponding Up
group on the channel axis.

Figure A.1: Annotated model reference
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Layers
Group Layer Type # Size #Nodes Kernel Activation Padding
Input 160 x 128 x 96 3

Down 1
Conv + BN 160 x 128 x 96 16 3 ReLU Same
Conv + BN 160 x 128 x 96 32 3 ReLU Same
Max-Pool 80 x 64 x 48 32 2

Down 2
Conv + BN 80 x 64 x 48 32 3 ReLU Same
Conv + BN 80 x 64 x 48 64 3 ReLU Same
Max-Pool 40 x 32 x 24 64 2

Down 3
Conv + BN 40 x 32 x 24 64 3 ReLU Same
Conv + BN 40 x 32 x 24 128 3 ReLU Same
Max-Pool 20 x 16 x 12 128 2

Down 4
Conv + BN 20 x 16 x 12 128 3 ReLU Same
Conv + BN 20 x 16 x 12 256 3 ReLU Same
Max-Pool 10 x 8 x 6 256 2

Bottom
Conv + BN 10 x 8 x 6 256 3 ReLU Same
Conv + BN 10 x 8 x 6 512 3 ReLU Same

Up 1

Up-Sample 20 x 16 x 12 512 2
Concatenate
Conv + BN 20 x 16 x 12 256 3 ReLU Same
Conv + BN 20 x 16 x 12 256 3 ReLU Same

Up 2

Up-Sample 40 x 32 x 24 256 2
Concatenate
Conv + BN 40 x 32 x 24 128 3 ReLU Same
Conv + BN 40 x 32 x 24 128 3 ReLU Same

Up 3

Up-Sample 80 x 64 x 48 128 2
Concatenate
Conv + BN 80 x 64 x 48 64 3 ReLU Same
Conv + BN 80 x 64 x 48 64 3 ReLU Same

Up 4

Up-Sample 160 x 128 x 96 64 2
Concatenate
Conv + BN 160 x 128 x 96 32 3 ReLU Same
Conv + BN 160 x 128 x 96 32 3 ReLU Same
Conv + BN 160 x 128 x 96 1 1 Sigmoid Valid

Table A.1: Grouping and hyper-parameters for the U-Net Segmentation
Model.



B
Convolution as Matrix Multiplication

In practice, the convolution operation is implemented as a matrix multiplication
for computation efficiency. The operation is represented by a Toeplitz matrix de-
noting the kernel multiplied with an vector representing the input. The following
description is based on the explanation by V. Dumoulin and F. Visin 2016 [7] and
Z. Zhang 2016 [29].

y = f ∗ g =



g1 0 · · · 0 0

g2 g1 · · ·
...

...
g3 g2 · · · 0 0
· · · g3 · · · g1 0

gm−1
... · · · g2 g1

gm gm−1
...

... g2

0 gm · · · gm−2
...

0 0 · · · gm−1 gm−2
0 0 0 · · · gm

︸                                     ︷︷                                     ︸
H



f0
f1
f2
...
fn


. (B.1)

When extending the Toeplitz matrix for 2D convolutions it is referred to as a
doubly block circulant matrix i.e a block circulant matrix consisting of circulant
topelitz matrices (Hi) generated from the rows in the kernel g. Below is an ex-
ample of how a convolution in 2D can be represented as a matrix multiplication
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problem.

f =
[
f0,0 f0,1 f0,2
f1,0 f1,1 f1,2

]
(B.2a)

g =

 0 0 0 0
g0,0 g1,0 0 0
g0,1 g1,1 0 0

 (B.2b)

Here, Hi is defined from the kernel, as seen in Figure B.1.

Figure B.1: Conversion from the kernel g into Toeplitz matrices.

which is then combined into the block matrix H by

H =

H1 H3
H2 H1
H3 H2

 , (B.3)

which defines the final operation as

y = Hf =



g1,0 0 0 0 0 0
g1,1 g1,0 0 0 0 0
0 g1,1 g1,0 0 0 0
0 0 g1,1 0 0 0
g0,0 0 0 g1,0 0 0
g0,1 g0,0 0 g1,1 g1,0 0
0 g0,1 g0,0 0 g1,1 g1,0
0 0 g0,1 0 0 g1,1
0 0 0 g0,0 0 0
0 0 0 g0,1 g0,0 0
0 0 0 0 g0,1 g0,0
0 0 0 0 0 g0,1





f1,0
f1,1
f1,2
f0,0
f0,1
f0,2


. (B.4)
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Note that this representation means we get the best of both worlds, the efficiency
of the matrix multiplication with the weight-sharing of the convolutional oper-
ator. Additionally, the matrix representation of an convolution provides two
desirable properties. The first is that the backward-pass can be computed by
multiplying the loss with HT . The second property is that it allows for layers
representing the transposed convolution by combining HT with a strided kernel
to produce feature maps larger than the input.
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